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oA The work on ONR Contract #N00014-84-K-0027\§7s progressed
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steadily during the first year of the contract. A major focus

874 K.

of the first year was on the mixed-mode fracture problem.

-

Theoretical work on the computational methodology for the

calculation of mixed-mode stress intensity factors was

performed. The convergence properties of several algorithms

were delineated and guidelines for the accurate calculation of
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mixed-mode stress intensity factors were established. This
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study also investigated the effects and influence of loading
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holes on the calculations, (loading holes are usually ignored in
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theoretical studies, if they are modeled, they are usually
modeled poorly). While previous studies have investigated the
accurate modeling of loading holes, their influence on fracture
specimens had not been sufficiently explored. In addition to
these fundamental studies, a proposed mixed-mode specimen was
carefully analyzed. This specimen (originally designed by

. Professor H. Richard) has been proposed for studies near the

a range of pure Mode II loading (so-called '‘pure shear'"). The

- calculations demonstrated the utility of the specimen for

measuring critical shear conditions for pure Mode II failure.

This study was performed in conjunction with an exchange

L A

student to The George Washington University (Mr. Peter

a

. s

Bauerle). His final report carefully documents the work

Ovie)

performed and is included as Appendix A of this report.
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Concurrent with the theoretical work, independent i:@

3 oS experimental verification of this fracture specimen was per- )




formed. Several refinements were made to the original design.
This design (which involves a very specialized grip
configuration) was constructed and tested. PMMA specimens were
tested to determine the failure envelope under the full range
of mixed-mode loading. In addition, uncracked specimens were
tested to determine their resistance to shear loading. The
results demonstrate the ability of this loading grip system to
accurately induce the full range (from pure Mode I to pure Mode
II) of planer mixed-mode loading conditions. This study was
also performed in conjunction with an exchange student to The
George Washington University (Mr. Roland Gerstner). His final
report completely covers the work performed and is included as
Appendix B of this report.

Most of the previous recent fracture research sponsored by

ONR focused on studying the nature of plastic deformation in

the vicinity of three-dimensional crack fronts. These studies
were completed during this contract year. Experimental surface
contractions were measured and compared with finite element
predictions. For the worst cases, the results agreed within
4%. The plasticity model employed and the finite element grid

convergence were, therefore demonstrated. In addition, several

global response parameters were compared with an experiment. ;} 
It was shown that global parameter agreement does not guarantee
accurate local modeling. The results of this study are

included in a paper entitled '"Prediction of Plasticity

Characteristics for Three-Dimensional Fracture Specimens -
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Comparison with Experiment' which has been accepted for
publication in Engineering Fracture Mechanics. This paper is
included as Appendix C of this report.

The three-dimensional plasticity studies have also
demonstrated many of the local response characteristics near a
crack front. Having established the accuracy of the modeling,
the response of the interior of the specimen can now be
accurately predicted. The influence of hardening, specimen
thickness, local relaxation, crack growth, etc., was accurately
predicted and investigated for straight crack, Mode [
specimens. While no conclusions regarding appropriate failure
criteria have been drawn, it was demonstrated that the failure
was definitely governed by a local parameter and it should be
related to the local deformation response. Previous studies
have indicated the inadequacy of a global failure parameter,
however, the local deformation characteristics have only now
been delineated and verified. The results were presented as an
invited paper at the American Society of Metals meeting held in
Salt Lake City, Utah (December, 1985). This paper is included
as Appendix D of this report. This paper will subsequently be
published in the proceedings of this conference by the American
Society of Metals.

The major focus of this contract has been to develop the
methodology and to begin a systematic study into the fracture

behavior of specimens subjected to high temperatures. To this

end, a test system for the high temperature and mechanical
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loading of specimens was procured, installed and tested. After
verifying the instrumentation, preliminary studies were
performed to delineate the constitutive behavior of Inconel 718
when loaded at elevated temperatures (temperatures above
S00°C). Uniaxial tests were performed and the data was "fit"
with several constitutive models. Upon the completion of
uniaxial testing, the experimental work focused on establishing
the instrumentation necessary to study crack growth phenomena.
Attention is focusing on accurate measurement of crack mouth
opening behavior for modeling purposes. In addition,
preliminary tests are being run to determine the requisite
loading to produce different crack growth rates of importance
for application. The experimental work to date is summarized
in Appendix E of this report. This Appendix also covers the
constitutive modeling being done.

Concurrent with the experimental and constitutive
modeling, work has focused on developing and testing a finite
element code to perform fracture analyses. The preliminary
code using a simple constitutive model has been completed and
tested. Work is underway to build in crack growth
capabilities, large strain modeling and alternative
constitutive models with mixed hardening properties. The
formulations being employed are discussed in Appendix F of this
report.

In addition to the work discussed above, two other publi-

cations were produced which summarized and concluded previous

---------------
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work performed under ONR support. These papers: "Finite
Element Methodology for Elastic-Plastic Fracture Problems in
3-Dimensions'" and "Effect of Specimen Thickness on Crack Front
Plasticity Characteristics in Three-Dimensions'' are included as
Appendices G and H of this report.

As is evident from this report and the publications
included, much has been accomplished in the first year of this
contract. The next year will be spent establishing the basic
experimental and numerical approaches for accurate modeling and
investigation of creep fracture processes. While our efforts
are producing useful and informative results, we have only

scratched the surface of this problem.
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ABSTRACT

Stress intensity factors are material independent
parameters which measure the stress and strain distribution at
the tip of a crack in a loaded solid body. These stress
intensity factors contain the geometry of the crack. They
enable to predict if a prescribed load can be applied to a
damaged material without losing the required safety.

In this research all calculations were done with the finite
element program APES which uses l2-node quadrilateral
isoparametric elements. In order to obtain the singularities
at the crack tip, the following two crack tip elements were
utilized:

- enriched elements

- collapsed cubic isoparametric elements

(1 & 4 point elements)
9 9

Since the stiffness matrix of the enriched elements already
contains the singularity functions, KI and KII can be
calculated together with the displacements by the computer
program. Using the collapsed cubic isoparametric elements, the
stress intensity factors KI and KII have to be determinated
with the aid of crack border displacement functions after the
run of the program.

These calculations were done for a special specimen
developed by H. A. Richard for mixed mode problems. Also, the

influence of the holes where the forces are applied was studied.
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1. INTRODUCTION

During the last 20 years many investigations have been done

to determine the stress intensity factor KI (Mode 1) where

the forces are applied perpendicular to the crack. However,
most cracks lead to mixed mode problems where also the stress
intensity factor KII (Mode II, sce Figure 1) has to be taken
into consideration. For this case it is important to develop
methods which allow to determine both, KI and KII' more
accurately. Only dependable stress intensity factors allow an
engineer to decide whether a damaged part of a machine or a
building can be used without 1Qsing the required safety.

In this paper, the finite element program APES will be
utilized to determine the two-dimensional stress intensity
factors KI and K;;. The 12-node quadrilateral
isoparametric elements of this program already lead to a high
accuracy with a relative small number of elements, compared to
lower order elements of other finite element programs.

On the following pages, only plane strain will be taken
into consideration. Plane strain means that along the z-axis
(third dimension) no strains are allowed according to the
Poisson's ratio. Therefore, in addition to the stresses in x-
and y-direction also stresses in z-direction have to come into
being. In reality, this state of stress can just be realized

in the middle of the crack tip qE a Compact Tension Shear
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specimen if the specimen is thick enough. Plane strain
represents the crucial load case of a CTS specimen which leads

to cleavage fracture without any prior plastic deformation.

-
L

&
LN :.

.0 .l .
AT

LA
et

k




%
13
s
v
4
v
v
v
L]

g
A

[ 2.
g o
i X

;‘ 3 :'::\
4 ,ﬁfx
. RN
L 2. INTRODUCTION TO THE 12-NODE QUADRILATERAL ISOPARAMETRIC R

ELEMENT

zf:

f. \ 4

The APES program, with which this research was done,

o T,
ot
2

utilizes the 12-node cubic isoparametric element (shown in

Y
'

a
)

B
[N

Figure 2). One l2-node element, given in the x,y coordinate

v % % S %,

v
s

oY
s

system, can be transformed into the natural £, n coordinate

A
IRk

system where the element is mapped to a square and the !gw

-l coordinates are dimensionless [1l]. ﬁf?
.; The displacement components can be written in the form Fﬁif
S Y .'
™ ' ‘
> 12 ey
-~ u= I N;(&n) u; (1 RN
5 i=1 i

12 - g
B v= I N.(En) v, ' 2 :

i=1 * t

u,v are the components of the displacements of a point with the
coordinates £, n, whereas u;, v, are the displacement
j components of the node i. Ni(E, n) represent the shape

functions or interpolation functions at the node i which are

: given by .
: Ny(E,n) = zgp(l + E£;) (L + nng)[- 10 + 9(£2 + n?)}: T
. B |
[+ 10 + 9(82 + n})) B

(3) SN

AR AN

+ o3a(l + EE (L + 9 ) (1 - n2) (L - nd)

+ o3p(l + an) (L + 9EED (L - £ (L - £D)
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where £., n, are the coordinates of the point i. It has to be ;?
mentioned as the important feature of the cubic isoparametric ,~?'
elements, that the same shape functions are utilized to ;?ﬁ
describe the geometry of the l2-node elements in the x, y
coordinate system.

12 o

~
(]

12

L NGB X (5)

<
]

where Xi5 ¥y represent the nodes of the element in the x, y

coordinate system. Evaluating the shape functions at each node

i, N(& n ) becomes:




N 5
[y A,
2 \:-:" 1
- Np = 3x(1 - n)(1 - E)[- 10 + 9(E2 + n?)]
X N, = 371 - M - £ - 38)
Ny = 3x(1 - n)(1 - E3)(1 + 3£)
Ny = 37(1 - n) (1 + E)[- 10 + 9(£2 + n?)]
Ng = 3z(1 + £)(1 - n)(L - 3n)
2 Ng = 3x(1 + £)(1 - n?) (1 + 3n)
2 Ny = 3(1+ n)(1 + E)[- 10 + 9(E2 + n?)]
Ng = 37(1 + n)(1 - §)(1 + 38)
a Ng = 3r(1 + n)(1 - €)1 - 38)
: N1g= 3p(1 + n)(1 - E)[-10 + 9(E% + n?)]
' Npp= 37(l - E)(1 - n?) (L + 3n)
Np,= 37(1 - £)(1 - n?) (A - 3n)
3 The element stiffness matrix [K] can be written in the form
2 11
» [K] = { { [B] " [D][B] det |J| dg dn (6)
7
i:l -
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SRS where [B] is given by o

[e]: strain field
N [e] = [B][u] _ (7
. [u]: displacement field

[B] = [¢c.,B:yene]

(8,1 = |’ °
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for plane strain [2]: e
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((1-v) v 0 1 “f%
v (1-v) 0

[D] = (1137%1773) v v 0
0 0 (1+v) (1-2v)
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i N [J] represents the Jacobian matrix (transformation matrix)

N 3x g_é 3Ny

N a s 0y g o e

N [(J] = k14 = 3¢ (9)
X 3 9N,

! Tn' 5% s 009 'a-n—l,coo

i If det |J| is zero, stress and strains become singular.

The advantages of the l12-node quadrilateral isoparametric

elements are [3]:

- the edges of the elements can take the shape of a
cubic function. Therefore, the 12-node elements can
be easily adapted to many practical problems.

- strains and stresses vary cubically over the element,
which means that only a few elements are sufficient to
simulate the required stress and strain distribution

in a solid.
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3. CRACK-TIP ELEMENTS

In order to simulate the nodal crack tip singularity in a
proper way, the finite elements around the crack tip have to
reproduce the strain singularity. The finite element program
APES already contains enriched elements which take the strain
singularity into account with the aid of specific singular

assumptions.
3.1 Enriched Elements

3.1.1 Introduction to the Enriched Elements

The enriched elements have the same shape like the ordinary
cubic isoparamétric elements and they can be adapted to the
required geometry of the specimen in the same way. In order to
simulafe the strain singularity at the crack tip special
singular functions are utilized.

S. E. Benzley describes the displacement assumptions for
enriched elements with 4 nodes [4]. For 12-node elements these
displacement functions can be written as follows:

2 12
fie Vi * R (Kp(Qqy - T Fy Q)

]
L]
0o

i g1
(10)
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where Ujp = nodal displacements ;
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£ = shape functions
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Qli’QZi = special singular assumptions

.
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>

.
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Qlik’QZik = the value of Qli’QZi evaluated

o

at node k

e

“"h‘“:

: . TN

R = correction function. NN
The correction function R provides for a disappearance of [

L]
e
B

RS

the singular assumptions at the borders where both, enriched

o

and 12-node cubic isoparametric elements, have to fit
together. However, these compatibility conditions are just
satisfied directly at the nodes. Between the nodes, the
displacements of these two different elements are not
coincident.

Strains are obtained by the derivation of the displacements

and they are not continuous at the border of enriched and

ordinary 12-node elements. Therefore, strains and stresses are

not correct close to the crack tip and they can not be utilized -tf;

for the determination of the stress intensity factors. The 354}
stiffness matrix of the enriched elements becomes ([4]: 2

- ' - 3 4 3 SRS

g1l k12 3 E bil

N e . B

l... 1.t = 1...¢ (11)
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10
where uU = element nodal displacements
K11 = regular
K22 = stiffness matrix from enriched terms
K12 = coupled stiffness matrix from regular and

enriched terms
F = singular load vector which becomes a null vector

if no enriched element is on a loaded boundary.

The equation system (11) points out that all singular
assumptions of the enriched elements are contained in the
stiffness matrix and that the stress intensity factors KI and
KII can be evaluated directly by the program with the
displacements.

Furthermore, it is advantageous that the size of the
enriched elements can be quite large without losing
considerable accuracy. Therefore, complete problems can be
solved quite easily within a short data preparation time.
Usually, enriched elements are working within an accuracy of
about 5%.

However, it has to be noted that smaller enriched elements
need not necessarily lead to a higher accuracy which is the
case for 1 & 4 point elements.

9 9

3.1.2 Application of the Enriched Elements

The determination of the stress intensity factors KI and
KII was done using a special specimen developed by

H. A. Richard for mixed mode problems [5], shown in Figure 3.
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First, a modified compact tension shear specimen was
studied, where the influence of the holes was neglected (Figure
4). Equally distributed stresses were applied.

With the aid of the sinus/cosinus relationship each applied

force F under the load angle o can be decomposed to the forces

Fz and Fs where

F, leads to pure Mode I

Fg leads to pure Mode II

It should be mentioned that, in order to obtain pure shear
stress on the elongated crack line for case Mode II, also a

moment M with
M=Fs'c

has to be applied in opposite direction of Fs. Applied

tensile and shear stresses:

Fz
for Mode I: 0, = 7%
F
. - _S - M _ 6M
for Mode II: To o Sbmax - W ;;?

The shear stress distribution was chosen in the form of a

parabola where

Tpax = 1+9 T (Figure 5)
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Figure 6 and 7 point out the finite element grid of the compact
tension shear specimen with the ideal force application.
Altogether, 20 finite elements are used, whereas 4 enriched
elements are arranged around “he crack tip.

In Figure 6, the boundary conditions for pure shear are
used: all nodes on the x-axis are constrained in x- and
y-direction. It should be added that for pure shear, according
to the Moor's strain circle (Figure 8), € vanishes in shear
direction, whereas Yy reaches its maximum. However, because of
the bending moment M there exist tensile and compressive
stresses along the x-axis (Figure 4) which should allow some
displacements of the nodes at the boundaries in x-direction.
This is not possible. Since the maximal tensile and
compressive stresses exist at the corners and since the
boundaries are far away from the crack line, these effects can
be neglected.

In Figure 7, the boundary conditions for pure tension are
shown. Only one node on the x-axis has to be constrained in x-
and y-direction, whereas all other nodes on the boundaries can
move in x-direction. This takes the Poisson's effect into
consideration.

Chart 1, Figure 9 and 10 point out the dimensionless stress

intensity factors KI and KII for load application angles

changing from O to 90 degrees. a was 0.6.
w
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3.2 1 § Point Elements

1
9

4
9

3.2.1 Introduction to the 1 § 4 Point Elements
9

O

In order to achieve the stress and strain singularity at
the crack tip, collapsed cubic isoparametric l12-node elements
can be utilized (Figure 11)[7]. These crack-tip elements have

to be distorted as follows:

- all nodes lying on the side of the crack tip have to
overlap (nodes 1,10,11,12).
- the nodes lying on the sides close to the crack tip

are placed on the points with the distances 1 2,
9

4 2 and 2 away from the tip (therefore the name 1 §
9 9

Ol

point elements).

The mathematical proof of the singularity for these elements is
given in [7].
The advantages if these 1 & 4 point elements are:
9 9
- one does not need special crack tip elements.
Ordinary 12-node elements can be utilized.

- smaller 1 & 4 point elements will lead to a higher
9 9

accuracy, which is not necessarily the case for

enriched elements.
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h; - because of the higher number of elements, the 1 § 4 N
9 9 BANAY
:ﬂ: :‘.::_.
by point element method is more time consuming than the ;_
enriched element method. e
- the stress intensity factors Ky and Kyy have to be _
. _ calculated in post-process. iif
?. The stress intensity factors KI and KII can be obtained o
‘ by using the following displacement equations at the crack tip ﬂ
: (Figure 12)[8]: .
u = 2L /T cos § 1301 » sin? §] i
X - q i3 7 7 z o
(13) k..
; * KII//?_ sin & [L(k+1) + cos? & Eé}
N u T 7T \'7 7 A
N
K TR
. 1 /r .86 1 - 2 8 AN
uy >0 /37 siny [7(k+1) cos 7] o
(14) R
: K s
- 11 /T 6 (1 .. 2 0 .
:; + -ﬁ—/ 2-1? cos Vi [Z(l‘k) + sin z‘] ~
A
S
provided that 0 < r << 1 -
] u = elastic shear modulus a
E 3 - 4v for plane strain ' ot
% K =

‘ 3 - v for plane stress P
1 v '

h e v = Poisson's ratio (Vv = 0.3)
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For 6 = 90° and 8 = 180° K[ and Kyy become & = 90°:

k
6 = 90°: . szt
X K- Y
7
c (15)

I
/&) &+ 1)
M 1 + 9

u(u, - uy)
II
by
/ﬁ k

o. = u ux
6 = 180°: K. = (17)

O /Ea-w

(16)

uu
ki = L '
JE (1. v (18)

3.2.2 Optimum Size of the 1 § 4 Point Elements
9 9

In order to find out the optimum size of the 1 § 4 point

©w

elements, the problem shown in Figure 13 was studied with the
appropriate boundary conditions.

Figure 14 points out the finite element grid for shear with
which the best results could be obtained. Aitogether, 30
finite elements were used, 6 crack tip elements were arranged

around the crack tip. The length ¢ of the 1 § 4 point elements
9 9

was 1.23% of the length of the crack a.
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. For shear, the stress intensity factors KI and KII were
) evaluated along the © = 180° line, since this is the only line
g where the tensile stresses vanish. The equations (17) and (18)
¥ were utilized. The results can be seen in Figure 15.
- Because the nodes of the crack tip are constrained in both
: directions the stress intensity factors calculated very close
to the tip have to be neglected (about first two elements).
. The stress intensity factors KI and KII directly at the
E crack tip were obtained graphically.
‘; Figure 16 shows the results of a 12 element mesh using 4
§ crack-tip elements (shear). The length of the % & % point gan
? elements was 1% of the crack length. This grid turns out to be égié
j too rigid. bzf
S . Figure 17 points out the results of a 36 element grid using 5&;:
E 6 1 § 4 point elements around the crack tip. It turns out that iiéi
9 9 iéi
just increasing the elements without using more crack tip Efﬁ
elements need not necessarily lead to a higher accuracy (Length ﬁzz
of the crack-tip elements: 0.667% of the length of the crack.). FEE
v For pure tension, the best results could be obtained along ?ﬁs
E the 6 = 90° line where the equations (15) and (16) were used ;E;
3 (Figure 18). ;E?i
:  The dimensionless K and Kry factors are (a = 0.6): E;;
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X The dimensionless Ky and Ky factors are (a = 0.6): ?.-1
~ w ':~_r
- « [°] 0 90 ,_:‘-
-'. I- l.‘.
; Ky 2
T 3.99 (4.12) 0 (- 0.01) B, 4
. — /T o
:-E 11 (-) 0.11 ((-)0.05)| 1.57 (1.63) S

. T— . . . . !
— /ma ..
wt R

Qi Fer o equal to zero degree, the dimensionless KI factor .
", [
becomes 3.99, whereas KII turns out to be - 0.11. Usually F;;
K&I should vanish for this loading case. However, this ‘ﬁ
discrepanpy should not be overevaluated, since for Mode I, all 15
nodes at the crack tip are constrained in both directions. E??
i This restriction can lead to different results. éﬁ;
4 \-""“‘
" For o equal to 90 degrees, the dimensionless K factor }Qﬁ
: " i
‘ turns out to be 1.57, whereas KI vanishes. . e
- The values in parentheses show the results of the enriched Zt;
element method. o
— E;

3.2.3 Application of the 1 § 4 Point Elements to the '

9 9
CTS Specimen
i Now, the 1 & 4 point elements are applied to the compact ;ﬁ
= 9 9 L
tension shear specimen. The stress intensity factors of the
" CTS specimen are determined with the aid of the finite element

= grid of Figure 19. Twelve 1 & 4 point elements are arranged f;
N - 9 9 :

around the crack tip. This grid is utilizing the boundary
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conditions already shown in Figure 6 and 7. Ideal distributed
forces are applied to the specimen.

There are several reasons why the whole finite element grid
of the CTS spcimen (Figure 19) has to be used and why it can
not be replaced by the grid shown in Figure 14.

First, in Figure 14 all nodes at the crack tip are
constrained in x- and y-direction. This leads to restrictions
which need not represent the reality. All nodes at the crack
tip should be able to move in all directions in order to adapt
to the required situation. This restriction can be the reason
for the inaccurate stress intensity factors close to the crack
tip in Figures 15-18.

Secondly, the boundary conditions of Figure 14 (shear) do
not simulate the boundary conditions for pure shear. According
to equation (14), all nodes along the boundaries should be able
to move in y-direction (9 = 0°, K; = 0, K;p = 0) except for
the nodes at the crack tip. 1In Figure 14, this would lead to
instabililty and could not be realized.

The finite element grid of Figure 19 does not use any
boundary conditions at and around the crack tip.

In Figure 20 and 21, it can be seen how the stress
intensity factors are evaluated. For pure tension (Figure
20a,b), the stress intensity factors were determined along
the 8 = 90° line (Figure 12, equations 15 and 16), whereas for

pure shear (Figure 2la,b), the 6 = 180° line was utilized along

the upper crack surface (equations 17 and 18). The calculations
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along the upper and lower crack surface lead to identical
results. In Figure 20 and 21, the k factors of all nodes along
the 8 = 90° or © = 180° line could be used in order to
determine the stress intensity factors at the crack tip. For
all calculations, the nodal displacements relative to the crack
tip were taken into consideration. Since all nodes of the
crack tip are allowed to move separately, only éhat crack tip
node was chosen as the reference point which was laying on

the 6 = 90° or 6 = 180° line of the respective 1 § 4 point
9 9

element.
In Chart 3, Figure 22 and 23, the dimensionless stress
intensity factors are shown for a = 0.6. For pure tension, the

w
dimensionless KI factor turns out to be 3.98, whereas KII

vanishes. For pure shear, the dimensionless stress intensity
factor KII becomes 1.56, whereas KI is zero.

The results of the 1 & 4 point elements are compared with [ ¥ |
9 9

those of the enriched elements and of Richard [9]. Richard
used a superelement in order to simulate the crack tip
singularity. In general, the stress intensity factor df the

1 & 4 point elements and the results of Richard are laying very
9 9

i PR

P
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close together. The differences are equal to or smaller than Fod
'«:.‘_ :.
1% and can be neglected. The enriched elements are a little =
!".:r'l
bit more inaccurate. e
e
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Figure 24 and 25 point out the location of the crack-tip
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nodes after applied shearing and tensile stresses. For shear,
the nodes are more distributed in direction of the x-axis,
whereas for Mode I, the crack tip nodes are more arranged along
the y-axis. Unfortunately, it is not possible to find out in
which direction the crack will propagate. The nodes of the
crack-tip elements are randomly distributed.

Figure 26 and 27 show how the crack will behave for the
loading cases tension and shear. For pure tension (Figure 26),
the nodes on the upper crack surface undergo larger
displacements than the nodes of the lower crack surface.
However, in the vicinity of the crack tip, the displacement of
the corresponding nodes on both surfaces are identical.

Figure 27 shows the behavior of both crack surfaces for pure
shear. Along the whole crack line, both surfaces are sliding
against each other as expected. Away from the crack tip, both
crack surfaces are penetrating slightly. This penetration is
very small compared with the displacements in x-direction or
the displacements in Figure 26. It lies within the accuracy of
the program and should not be overevaluated. It can be said

that for pure shear, no penetration'occurs along the crack

surface.

T e T e e Ti
& ‘..”.. ."'.' ",M R
LALALACM IS IR N
's"l.-,','.'v‘» e et

o s
'-( .

LARE &
Vo d et WO
L)

VT

2t




21

4. LOADED HOLES WITHIN A PLATE

4.1 Modelling of the Holes

Up to now, just the ideal force application to the compact
tension shear specimen has been taken into consideration. In
reality, the forces are applied with the aid of bolts which
could lead to a different stress and strain distribution around
the crack tip.

In most of the previous examinations just a nodal force was
assumed in the middle of the holes. Also Richard [10] was
working with single nodal forces when he was studying the
stress intensity factors of his CTS specimen.

However, there are required so huge forces in order to be
able to tear apart a CTS specimen that a plastic deformation
comes into being. This plastic deformation leads to a force
application over a broader cross section at the holes. No one
knows how broad this plastic zone will be.

In this research another approach was done. It was assumed
that the bolts fit exactly into the holes of the CTS specimen
and that the forces can be applied over the hole cross section
of the holes. All calculations were done for the pure elastic
case.

Figure 28 and 29 point out the finite element grids of a
arbitrary plate and a bolt. The boundary conditions of the
bolt are imitating the hole of the plate: the points 1-7 of

the bolt can just move along the tangent of the hole. For




! 22 %ﬁt
.: ,z ':: )
b‘ ‘Qf‘.‘
RO X
S both, hole and plate, the symmetry could be used. =
% When the bolt is loaded, a nodal force F is applied in the ;&:,
F bt
’: center of the bolt in negative y-direction which leads to an y“f
" 394
' elastic deformation and to reaction forces in the nodes 1-7 in ;;f
-3 y-direction. These forces (F1 - F7) are applied at the 1§fj
;E. nodes 1* - 7* of the plate. The displacements of these nodes i%ﬁi
' (1* - 7*) can be taken as prescribed displacements for the Efi_
nodes 1-7 of the bolt. After 9 iterations, the changes of the '
forces in the nodes 1-7 of the bolt were less than 1%. The
obtained forces and displacements are given in Chart 2. “SRE
It should be mentioned that S
13 o
L I-‘i = 1,.3873 = 1.3873 F L ls
i=1 <3
o
The reason is that the finite element method is based on the j%f
s A
principle of virtual displacements which leads to ufﬁ
SWg:  work done by external forces
SWy: work done by internal forces
T T T . "_-;_'
J (0°8e) dV = s (b Au) dV + S (p Ag) dA (20) F
A T \'s - A h =
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stress matrix

tQ
"

a strain matrix

1o M
(]

body force matrix

'y
[l

exterior surface force matrix

displacement matrix

1 £
"

= surface area

< >
u

volume

Because of the separation of bolt and plate, for the plate,
just the nodal forces Fl"'FIS have to be taken into
consideration. Therefore, the resultive force which is applied

to the hole of a plate is

13
F = 1,3873 F = I F, (1)

res j=1 1

Figure 30 shows the deformation of the bolt and the plate
under the influence of the applied force F.

Figure 31 and 32 point out the dimensionless stress

distribution around the bolt and the hole of the plate.

4.2 Application of the Holes to the Simplified Compact

Tension Shear Specimen

First, the holes are applied to the simpiified CTS specimen
of Figure 12 which leads to Figure 33 (a = 0.6).
w

In Figure 34 it can be seen how the stress intensity

factors KI and KII are evaluated for shear. It turns out
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7 that the difference between the stress intensity factors using ‘T
o~
? a CTS specimen with and without holes is less than 0.2%. For e
both cases KI is pretty exactly zero (shear). iﬁn
.\.
)

The dimensionless KII factors are:

II
. . . * 1 _
including the holes: KII — = 1.573
1 — /ma
I tw
K
; x 12 76
: without the holes: KII T - 1.5
. 2 = /ma
N tw
% -
! “tr, - ¥,
. x = 0,19%
M1
2
i which lies within the accuracy of the procedure and can be

neglected. Since for pure shear, the shear force is applied to

a single hole and the other two holes are utilized to apply the

‘EBs e

bending moment, this case can be considered as the extreme
loading case. For all other loading cases the difference of

the stress intensity factors using specimen with and without

=Y

holes will not be more than 0.2%. Therefore, for the following
. problems the influence of the holes can be neglected and only
f CTS specimen with the application of equally distributed forces
é will be used.




= 4.3 Application of the Holes to a CTS Specimen

Figure 35 shows the CTS specimen with enriched elements
including the holes. In this grid the ideal boundary

conditions could be utilized (statically stable):

- at the upper three holes the required forces are
applied

- the nodes of the lower holes are fixed in the shown
way: they can move in one direction. In the
direction perpendicular to it prescribed displacements
are used in order to achieve the same force

distribution which is applied to the upper three holes.

i With this grid, the boundary conditions of Figure 6 should be
. tested which are not 100% correct. Unfortunately, this mesh

does not work because the allowed bandwidth of the program was

l exceeded.
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5. EXAMINATION OF DIFFERENT CRACK LENGTHS
Up to now, only one crack length (a = 0.6) has been studied.
w

In this chapter, also two other crack lengths (a = 0.5 and
w

a = 0.7) will be examined with the aid of a finite element grid

£

similar to that one of Figure 19. Equally distributed forces
are applied to the specimen.

In Figure 36a-39b, it can be seen how the stress intensity
factors are evaluated for pure tension and pure shear. All
results are put together in Chart 4, Figure 40, 41 and 42.

For pure shear, the dimensionless KII factors are

1.37(a = 0.5), 1.56(a = 0.6) and 1.74(a = 0.7). Except for
w w w

= 0.5, all Ky factors vanish. For a = 0.5, K is
w

£ |m

slightly negative (- 0.02), which would lead to a penetration

of the crack surfaces. For this loading case,

l K1 is equal to 1.4% which lies within the accuracy of

Kir

the program and should not be overevaluated.
All obtained stress intensity factors are compared with the
results of Richard [9]. The differences between the results of

the 1 & 4 point element method and the results of Richard are
9 9

small, except for the crack length a = 0.5 (a = 90°) where

£
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Richard obtains a Ky factor of + 0.08. The 1 & 4 point f'.
9 9 K
elements lead to |Ky| = + 0.02 which is smaller.

For pure tension, the dimensionless K; factors become =y

2.81(a = 0.5), 3.98(a = 0.6) and 6.19(a = 0.7). All stress Eav
w W w R

intensity factors Kyy are zero. ‘hf‘
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6. SUMMARY me
£

R

In this research, the stress intensity factors KI and ﬂ%

o

KII were evaluated for a special compact tension shear :?

specimen developed by Richard. Two different crack-tip

elements were utilized: enriched elements and 1 § 4 point
9 9

elements. The finite element grid using enriched elements
leads to quite accurate results with a relative low number of

elements. In order to obtain more accurate results, 1 & 4
9 9

point elements have to be used. For this case, the size of the
finite elements arranged around the crack tip has to be very

small. The optimum results could be achieved for 1 § 4 point
9 9

elements with an element length of about 1.23% of the crack
length.

Furthermore, the holes were examined where the forces are
applied to the compact tension shear specimen. Two different
finite element grids were compared: one mesh with a force
concentration around the holes and another finite element grid
with equally distributed forces at the whole cross section.
Both finite element grids led to the same results which means
that the CTS specimen is so well designed that the holes do not
have an influence on the stress intensity factors.

Altogether, the stress intensity factors were evaluated for

three different crack lengths. For pure shear, the

dimensionless stress intensity factors KII become
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1.37(a = 0.5), 1.56(a = 0.6) and 1.74(a 0.7). Ky is pretty
w w w

exactly zero for all three crack lengths.
For pure tension, the dimensionless stress intensity

factors Kp turn out to be 2.81(a = 0.5), 3.98(a = 0.6) and
w w

6.19(a = 0.7), whereas the Ky factors vanish.
w
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CHART 1:

...............

Dimensionless Ky and Ky Factors for

Enriched Elements (Ideal Force Application)
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CHART 2:

Obtained
Faa+1

F, = Fg =
F3 = Fg =
Fg = Fi0
Fs = F11
Fg = F12
F7 = F13

Obtained displacements:

.Bolt Loading

forces:

0.12489

0.14789
0.14274

Equivalent Forces and Displacements Due to

}Y

0.08601

0.12535

= 0.12076
= 0.00844

(for F = lﬁ 8

Node # y [x 10-11) x [x 10-11)
1 - 361.9 0.
2 - 375.8 13.5
3 - 334.5 23.6
4 - 278.3 7.7
5 - 216.9 18.6
6 - 131.7 - 52.1
7 0. - 60.2
8 - 375.8 - 13.4
9 - 334.5 - 23.6

10 - 278.3 - 7.7
11 - 216.9 18.6
12 - 131.7 52.1
13 0. 60.2
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Abstract

In a Jliterature survey it was found that the CTS
specimen proposed by Richard is the most suitable specimen
for mixed mode experiments, which were conducted with PMMA.
As it was found in tests with_CT specimens that the critical
stress intensity ¥y of PMMA depends on the stress intensity

rate K, the testing was done at a constant K. The fracture

criterion
. 2
K1 K11
X *\X =1
“Ic IIc

gives a reasonable fit to the experimental data. Some
problems in mode || testing with the CTS specimen were found
that need further consideration. In additional tests the

modulus of elasticity and the Poisson ratio were obtained.
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wWhile mode | fracture mechanics are well established and

1.'

N

a

commonly used, mixed mode fracture mechanics did not reach

S A Y.

more than a prelimary stage vyet. There is no standardized
testing procedure. There are many different failure criteria

but none of them can be judged as true or false because of

the lack of reliable data.

On the other hand, mixed mode fracture is of great
practical intrerest as almost no real structure is so simple

that a crack is subjected to pure opening mode. Mixed mode

Gl VPSS

loading occurs at curved and inclined cracks, branched

.

cracks, welded or glued joint;,‘and in many other cases.
This paper starts with a literature review of mixed mode
fracture mechanics with three points of interest: mixed mode

specimens, fracture criteria, and earlier experimental work.

EENE RIS R

As the values for mechanical properties of plexiglas found
in literature differed considerably, testing of these

properties was done. A series of tests with CT specimens {1}

R TP

was conducted to find out the dependancy of the critical

IRt

stress intensity K, on varying :tress intensity rates.

Finally, mixed mode experiments with the compact tension
shear (CTS) specimen proposed by Richard {2-8} were

performed.

o } - - . e . - - . . - - . LI L ) - .. . - . . . - . - e - - - . -
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Il Notation
Many researchers wused the index m = K,/K to
characterize mixed mode problems. But for pure mode I} (, =

0) this index is infinity and therefore no diagram sver the
complete mixed mode ranée from pure mode | to pure mode ||
can be drawn.

Another index often used is B = arctan(K, /K,) where B =
90° for mode | and B = 0" for mode Il. This index is highly
functional for a large panel specimen with an angled crack
(see next chapter) as B is equal to the inclination angle of
the crack, but it ha; no physical meaning in other
specimens.

Shih {9} introduced the index M = (2/v) arctan (K, /K,) in
his paper. This index never got attention by other
researchers.

Hence in this paper the index n = K,/ (K, +K,) is used
which also is used by Richard {8}. This index goes from 0
for mode | to 1 for mode 1| and is therefore easy to use.

The indices B and m can easily be converted into n by ihe

formulas
ne= ——m (l)
l+m
n = cesB (2)

cosB 4+ sinB

Table 1 gives the calculated relations.
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111 Literature Review

The following literature review consists of the three
parts mixed mode specimens, fracture criteria, and earlier
experimental work. From this review a plan of investigation

is concluded.

1. Mixed Mode Specimens

To date, there is no standadized specimen for mixed mode
experiments. During the literature review, 10 different
specimens of general use were found which will be discussed
briefly. These specimens are (see figure 1)

S1 Panel with an angled center crack under tension (ACCT),
sometimes with notch (ACNT).
S2 Panel with a single angled edge crack under tension

(SAECT)

S3 Pane! with a curvilinear center cra;k under tension

(ccem)

SL Panel with a center crack under biaxial *ension {CCBT)
S5 Single edge cracked specimen wunder 3-point bending

(SEC38B)

S6 Single edge cracked specimen under L-point bending

(SECLB)

S7 Tube under torsion with an oblique crack
$8 Brazilian disk (BD)
S9 Specimen proposed by Banks-Sills

S10 Compact tension shear specimen (CTS)

TSNS S VR T P Y oy
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Beside these, spherical shells under pressure {10,11} and.
X-, H-, and T-shaped specimens were used {12}. The
abbreviations in parentheses are used in the following.

As with the most often used ACCT specimen no pure mode ||
condition can be acieved, the following specimens were
emplioyed for mode || testing
S1) Compact shear specimen (CS)

S12 Inplane shear specimen (IPS)
These specimens will be discussed briefly as well,

The panel with an angled crack under wuniaxial tenstion
(figure la) is the most often used specimen {13-23}, but
there are some variations: Erdogan and Sih {131 used a
large plate (a/b = 0.2) subjected to "uniform tension at

infitnity" and gave for that the stress-intensity factors

K; = oViasin®B, K = o/@asinpcosp  (3)

which are used by other resesarchers as well.

Shah {18} and Wiison {23} used a narrow panel (a/b = 0.5)
with only one loading hole on each end. The stress intensity
factors for this configuration aie not explicitly given, but
it is obvious that they are different from those of the
large panel. Wu et al. {34,35} wused a large panel (a/b =
0.17) with an angled elliptic notch loaded by three pins on
each side. Many researcher do not state at all which kind of
ACCT specimen they used.

The obvious problem 1is that the results cannot be

- compared simply by the crack angle as the mixed mode ratio n

SURP I IT WAL S NP7 2 TR TP ST e NS RIS W S DV TN SR g v
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is different. Equation (2) is strictly valid only for an
infinite panel loaded at infinity.

The biggest limitation of this specimen is that no pure
mode |1 condition can be achieved. Therefore researcher
could not perform experiments over the complete mixed mode
range or they had to use another specimen for mode ||
" experiments. The loads increase con;iderably for decreasing
angle and in some cases the specimens broke in the loading
holes for small angles {21}.

Another problem is the fatigue precracking as the
application of the load in testing direction would result in
curved cracks which are of no use. Several researchers
p?evented the problem by using onily thin machined sliits
{21,25,33} or by introducing the crack with a razor blade
{15} which is possible in the case of PMMA. If fatiguing is
necessary as in the case of steel or

alumiﬁum.alloys. the following procedure has to be done
{12}: A central not angled notch is machined in a larger
plate. Then this plate is precracked in the usual way. The
final specimen is cut out of this lager plate afterwards, as
shown in figure 2. This procedure wastes a lot of time and
material,

The plate with an angled edge crack subjected to uniaxial
tension (SAECT) (figure 1b) is used less often {12,36,37}.
The problems in production and application of this specimen
are similar to those just stated for the ACCT specimen.

Hussain et al. {38} suggested a plate with a curvilinear

-~
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vy
KAl
Y LN}

central crack subjected to uniaxial tension (figure l¢) for

‘m '.' >

’,
v e

Lol

(] "v .'r"y

mixed mode and mode || testing and performed some mode (I

&
4, 5

7’

experiments. The specimen did not get much attention as it

% "y
Y

is quite difficult to produce a curvilinear crack. The mode K. ..
Il conditon is at n = 77.0° (not at 79.6° as stated). A pure

mode | condition cannot be achieved as K, gets zero atn =

137.5 and there is K, < 0. ' | Q:ﬂ

The cracked plate under biaxial tension (figure 1d) s ig;
used by several workers {25,39-41}. There are some ;E;
variations: Some used a straight crack and just changed the iii

ratio ¢, /d, {39,40}, others rotated the crack {25}, and o
Raden et al. {41} used curved cracks. A testing machine

suitable to produce biaxial loading is necessary. Therefore

. . . . ":.:'J

the effort in machinery is higher than for those specimens A
sl

. . N . e

which can be tested in uniaxial tension. ot
.

The tube under torsion with an oblique crack (figure le)

R

.
.“'.-...." e

got some  attention {11,13}, but it is not very easy to
handle. Also, not every material is available as tube
material. ‘;@

- ‘ ' The “hrre- or four~point bend specimens have some

RN

:}, : advantages: They are easy to produce and fatigue. They can _ %{f
. be tested from pure mode | to pure mode il, although a pure ;;:
mode || condition may only be achieved with a notch, as ;ES

pointed out by Richard {h2}. The bend specimens got some Eéi

attention in experimental work {37,43,44}. !;;

- BAN

B The Brazilian disk specimen which also can cover the f?;
compiete range from mode ! to mode || was used by several ;Ei

. g
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PAGE 7
researchers {45,46}. As the crack is subjected to gi;
compression in this specimen, friction between the crack EESﬁ
flanks may occur {42}. The fracture mechanism for a crack :fig
under compression may be different from that under tension 5544
{47}. Hence the results between tension specimens and the igﬁ
A
BD specimens may not be comparable: :&:5
AN

Banks-Sills et al. {50} recently proposed a new specimen

B
4

for mode |l dominant mixed mode experiments. This specimen :ffﬁ
is not suitable for mode || experiments. No experiments with i}}z

P
this specimen have been reported yet. e

The CTS specimen proposed by Richard {2-8} is similar to
the Banks-Sills specimen. But instead of gluing the specimen
to the grips, Richard Qéés a statically determinant
connection by means of pins. This is easier to handle in *

practical application. The CTS specimen can be used from

pure mode | to pure mode Il. Richard et al. {42} claim that

the CTS specimen is superior to the Banks-Sills specimen and

all other specimens in mode || testing. A problem with the fﬁ:
CTS specimen is that the influence of geometrical deviations ;;Q
which are inevitable in machining the specimcns is not known f:?j

yet. No other experiments than those performed by Richard

R

himself are reported in literature so that the basis for g;;
direct comparison is tiny. iiEA
The K,  values which are necessary to confirm the igi
different mixed mode fracture criteria are evaluated with E;g
two different mode Il specimens, the compact shear (CS) ~§i
specimen {49} and the inplane shear (IPS) specimen. Although ﬁii
[
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Chrisholm and Jones {43} claim to achieve virtually pure’

mode || condition at the crack tip of the CS specimen, later
researchers got different results:.RiddIe {50,511} found that
K, is much larger than anticipated and that already small
variations in ;he boundary conditions change the ratio Ky, 7K,
extremely. And Richard et al. {t2} came to the conclusion
that "this specimen is unsuitable for the evaluation of ﬁg'.
The discussion abouf this specimen is not settied yet. A new
FEM calculation by Elenz {52} shows that the state of stress
at the crack tip is essentially mode I1. The CS specimen
was used by {21} in their experimental work. -

The inplane shear specimen did not get that much
theoretical attention. It was used by {13,211} for mode |1
testing, but the introduction of the forces impeses some
uncertainties.

In general, it is very difficuit to achieve pure mode |1
condition. Paris and Sih {53} found that only internal or
very deep external cracks show significant mode |1
displacements. Several researchers {9,43,54} found in
numerical analyses that the plastic zone incresces with
increasing Kye Beside some other problems this imposes that
the thickness requirement for mode |] specimens may be
greater than that for mode | specimens {54}. A further
discussion of the problems and some other mode |} specimens
are found in {h2}.

The question remains what the influence is on the value

of Kic if the state of stress is not pure mode |l but
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slightly mixed mode. If Ky, is very sensitive to small EE}_
é changes in the loading condition, the error may be high. It g&ér
E seems though that K, is not that sensitive, but a final t".;:"
. answer cannot be given with the momentary knowledge. !;%_
5 o
; 2. Fracture Criteria 2
,L The purpose of the mixed .mode frature criteria is to
:é relate the onset of crack growth under mixed mode loading to

that under mode | loading. Two princjpally different groups

of fracture criteria can be distinguished: Those which are

based on some theoretical or physical considerations and
" those which are evaluated ;ﬁpirically by a best fit to
‘2 experimental data. °
Ez In all the criteria of the first group, the critical

stress intensity K. for mode | is set as standard value. The NS

most interesting case therefore is what the criteria predict

for pure mode Il. The predicted ratio Ki/K. and also the ;Ejf:
3 predicted angle of fracture initiation in mode |l was f?i
: 'aalculated for different criteric {13,16,17.38.55-65[ and is z{;j
3 given in table 16. Scme of the criteria are sensitive to _ . lﬁfﬁb
7 the Poisson ratio. In this case v = 0.36 was used which is fiQ‘
, found for PMMA.
'2 Although Erdogan and Sih {13} and Nuismer {55} used

different approaches in developping their criteria, the

DN
~ .
e
Ll

prediction of both criteria is the same for the fracture

.

initiation as well as for the fracture angle. Another well

o .
. ¢ 'l

.
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-
-

»
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PAGE 10

established criterion is Sih's strain energy density.
function {16,17,59}. The predictions of this criterion
depend on the Poisson ratio. While the difference to the
other two criteria is within 108 for a Poisson ratio around
0.3, the predictions are very different for extreme values
of v. Therefore, experiments with materials with an extreme

Poisson ratio are best to prove the validity of this

criterion.

Many criteria {13,17,55,59,66} base on the assumption ) ;;i

[ ]

that fracture is a local phenomen and that hence the stress »f!%
distribution in the vicinity of the crack tip can be e

described just by the singular terms of the William's stress

funtion {67}. For a definition of the stresses around the Do
crack tip see figure 3. EEZE

Inspired by a paper of Cotterell {68}, Williams and Ewing ) :éii
{15} pointed out that the stress o, parallel to the crack tip - _;\;
(see figure 3) may not be neglegiblé. Hence they added the iii%
first nonsingular term of the William's stress function {67} iﬁfh
in their analysis. Later. Eftis, Subromanian and Liebowitz -k::
{69,70} confirmed this appioacﬁ. Severa! authorz‘{15,7]~73} ;ii
based their fracture criteria on this enlarged function. The ;ﬁi
problem is that all these criteria cannot be described in :ii:
terms of K and K, only, but need an addit{onal parameter. 23;
This parameter must be determined experimentally which &Sﬁ
usually is done in a way that the resulting function gives :;ﬁ;
the best fit to the experimental data. As the calculation of ;Ei
K./K. is not possible without knowing this parameter, these sﬁ;

e e - ATl e
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PAGE M1
criteria are not listed in table 2.

Most criteria are for brittle fracture. But there are
also four criteria that take plastic deformations into
account: the criterion by Shih {9}, the crack separation
energy rate criterion {43,73}, the T-criterion {31-33,74},
and the J-integral {63-65}. It is especially interesting
that the T-citerion predicts for pure mode || an angle of
fracture initiation of about -97 deyree, while the J-intgral
predicts O degree which are extreme values,

A second group of fracture criteria are the empirical
criteria. They are evaluated as best fit to the
experimental data. Normally they require the knowliegde of
Ky The most general form of th;m is

K. ¥ |’K ]"
I I
=1
[ch] " [Rr1e (4)

Awaji and Sato {6} found u =v = 1.6 for graphite and
plaste; and u = v = 2 for marble. Shah {18} got u = v =)
for steel which was confirmed by Chiu and Liu {39} for
aluminum and was found by Leicester {75} for wood. Wu {76}
§ot u = l_and v = 2 for wood and fiberglass =~ reinforced
plastics which later was found by Richard {4,8) for PMMA.
"Lee and Advani {77} confirmed these exponents in an analysis
based on the Griffith tﬁeory {78}.

The mixed mode problem is dealt with in official
regulations too {79,80}. The ASME Boiler and Vessel Code
{79} suggests to project the inclined crack in the direction

of the maximum stress and subject then the projected crack
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L T . . . . R P N L T AT S
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PAGE 12

to mode | loading. The fracture criterion is

Kie = oyx (asinp) (5)

After some algebraic transformations (see appendix 1), this

equation becomes

B 1.5
K]
& - = (6)
K =
Ic KI 2
1+ i
IT

This criterion is dicussed in several papers {8,57,81}. As
can be seen in figures 4k to 6 in {57}, the ASME criterion
makes in some cases prediction of higher fracture loads than
other criteria, especially in the case of pure shear. But
this does not mean that the ASME criterion is unsafe, as
this is _Jjust a relative -difference and the other criteria
are not convincingly verified by exp;riments either.

This short review of the mixed mode fracture criteria is
far from being exhaustivé. Already in 1977, Gilles {82}
repi.. ted of 35 different mixed mode fracture criteria. This
paperv also is mainly restricted to homogeneous materials
subjected to tension. For orthotropic materials (wood,
cﬁmposite materials) or for cracks under compression, other
criteria can be found in literature. For a further

discussion of fracture criteria and also comparison between

them, the reader is referred to {8,19,57,58,81,83-85}.
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3. Earlier Experimental Work

There is no standardized testing procedure for mixed mode
testing. Most researchers took ASTM E399 {1} as a guideline.
But as already mentioned, the thickness requirement stated
there may not ensure linear elastic conditions as the
plastic zone increases in mixed mode loading. Pook {14}
introduced the criterion that the. net section stress at
fracture initiation should be less than -80% of the yield
strength of the material to ensure brittle fracture.

Many researchers already conducted mixed mode
experiments. Most research was done with PMMA, but steel
and aluminum alloys got considerable attention too.

The problems and results with PMMA will be discussed
later, now the other materials will be considered. Tables 3
to .5 give the results found in liéeratqre for steel
{18,19,25,33,43}, aluminum alloys {12,14,19,20,23,28,33,86},
and several other materiats {4,27,29,31,33,46}. As can be
seen in column 3 of each table, most researcher used the
ACCT specimen. Column 5 gives the range of the experiments
by the mixed mode index n. Many researchers did not test the
complete range from mode | to mode II. Another impcrtant
information is, how many specimens were tested, which is
given in column 6. It is felt that that 3 or L specimens
are not enough to make any conclusion about the tested
materjal. Columns 7 to 9 finally give Ku'Km- and Kk/Kk as
far as they are stated in the cited‘papers. A comparison of

the experimentaily found K, /K, with those predicted by the
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different fracture criteria (table 2) reveals that only the-

J-integral {63-65} and the criterion by Irwin {61,62}
predict Ki = K, and are therefore close to the experimental
results. Most researchers who perfomed these experiments

therefore used empirical fracture criteria.

The angle of fracture initiation predicted by the va(ious'

criteria differ considerably. Hence experimental
verification 1is necessary. An interesting experiment to
check the validity of Sih's strain energy density criterion
{16,17,59} was performed by Finnie and Weiss {49}. They used
cross-rolled beryllium (Vv = 0.0) and found that the measured
fracture angle is much higher than predicted by the strain
energy density criterion but is close to the prediction of
the Erdogan and Sih criterion {13}. Awaji and Sato {46}
measured the fracture angle in mode |l for graphite SA (L)
Vv =0.07) and graéhite 7477 & = 0.20) and found it to be
around 67 degrees in both cases. All these experiments give
evidence that the angle of fracture initiation is
essentially independent of the Poisson ratio.

Although the J-integral and the T-criterion predict
totally different fracture angles for mode ||, both are
verified experimentally. Riddle {50} performed experiments
with aluminum and found the angle to be around O degree,
while Theocaris {31} wused Polycarbonate of Bispheno! A
(PCBA) and found '"angles absolutely greater than 90°",

Plexiglas got the largest attention in mixed mode

fracture research {4,11,13,15,21,25-27,33,34,37,40,41,44}.
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The results are given in table 6. In addition to the
information included in the other tables, this table states
the way in which the crack was produced (column L), the
displacement rate used for testing (column 5), and whether
slow crack growth was reported in the paper (column 6). Most
researchers found Km/Kuto be around 0.9 which is close to
the va[ues predicted by several fracture criteria (table 2).
This is not that surprising as most.of the fracture criteria
were constructed to explain the behavior of PMMA.

As it was planned to perform the new experiments with
PMMA too, this material got further attention in the
literature review.

Many mixed mode experiments.require the knowledge of the
Poisson ratio. In addition, it is usefull to know the
modulus of elasiticity and the strength of the material. The
values found in literature {4,7,11,33,37,87-94} are given in
table 7. The range for the modulus of elasticity is from
2.0 to 5.0 GPa and for the Poisson ratio values between 0.30
and 0.43 were stated. Often ét was not very clear whether
the stated value was obtained experimentally or whether it
was chosen as the best fit to the respective theory.

The modulus of elasticity is dependent on the straining
rate {95}, but most sources do not state this rate. Williams

{95} gives the equation

E = [0.655 + 2.74(8)°°1%9apa (7)

where & is the straining rate with theunit 1/s. Williams
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applied this formula for e = 5x10-* 1/s to 102 1/s. He
therefore got values for E from 1.6 to 5.2 GPa.

The fracture toughness testing of PMMA involves some

problems. In the following, those found in the literature
are stated and discussed:
1. Most test{ng machines are designed for metals. Therefore,
the lowest load range is around 5000 N. Even with a high
accurancy of 0.1%, the error because of the small fracture
loads for PMMA may be high. This problem is reported by
Phadke et al. {21}. They used a load range of 500 kg (4900
N) with a least count of 0.5 kg (4.9 N). For the smallest
reported fracture load of 7.5 kg (73.6 N), the error is
6.7%.

It is also not clear whether ASTM E399 {1} is applicable
to PMMA or not, as this norm is designed for metallic
materials. Despite this uncertainty, that standard was
applied in many papers, as no other standard is known.

2. Many ‘researchers consider PMMA as ideal isotropic and
brittle, while otheﬁ scientists proved that socalled crazes
establish at the crack tio {89,96-99}. The crack tip is
supposed to have atomar dimensions and the fracture process
is a molecular process. As PMMA has large molecular chains,
the orientation of these chains influences the state of
stress in a way that it is inhomogeneous in molecular
dimensions. Crazes only develop in an inhomogeneous state of
stress which shows that this material is not that ideal

isotropic in a microscopic range. Furthermore, crazes are
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It was suggestd to anneal the the specimens to reduce the )

a

crazes {100} which was done by {34}. In addition, Mai {100}
suggested to minimize the occurence of crazes "by a coating
of silicone oil onto the specimén surfaces". The influence
of this coating is not readily understood and no other Eﬁj
reference to it was found in literaéure.
3. The fracture toughness of PMMA depends on the
temperature, the relative humidity of the air or the water
content of the material respectively, and the presence of
chemitals. Therefore, some researchers stored the specimens bj.;
under specific conditions for..1500 hours {94}, or did the . . ;l“
testing in climatized rooms {100}. But most researchers did
not have the facilities and did the testing under whatever
conditions there were in their laboratories.
L. As' was discussed in several papers {95,101-104}, the
fracture ‘toughness of plexiglas depends on the crack
~propagation speed. A group of researchers {95,102} state
that there exists a 'unique relationship between critical
stress intensity factor and crack speed which is independent
of the test piece geometry used" {95}, while Cotterell {101} i;l-
claims that "although the fracture toughness does increase
with velocity of fracture, ... it is not a function of
verocity'. The results of the first group show a high data
scatter for crack speeds greater than 1 mm/s which s

probably due to an inaccurate method of determining the
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crack velocity at higher speeds.

5. As Marshall et al. {103} put it, "the most common mistake
is the evaluation of K, at instability by using the length
of the original notch when in faét the crack leng;h after
the slow growth regime can be considerably greater". Ffor
slow crack growth, PMMA shows a rough surface with furrows
in direction of the crack growth, sometimes called 'river
. markings"  {94}. Fast fracture produces a smooth,
featureless, mirror-like .. fracture surface {94}. The
transition is marked by a sharp line {105}.
The problem lies in the relation of the slow crack growth
to the load - displacement curve. |t is not clear whether

the slow crack growth really does occur before reaching the

s

peak load, or whether the crack just starts slow at peak

|
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load. Beside that, a correction for slow crack growth is

Vo

1

only possible for pure mode |. Under mixed mode and mode ||

£ v

loading, the crack does not propagate selfsimilar, and after
initiation the K, and K; factors are unknown.

There is considerable amount of mixed mode fracture

research done in East Eurcpe {66,106}, Japan {107-109}, and

China {112,1135}. Abstracts of further Chinese papers can be

TP Y B S

found in {112,113}. All these works could not be considered
in this paper because the respective journals were not

available.
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L. Summary

1. The CTS specimen is the best specimen for mixed mode
experiments found in literature. It can be used for the
complete mixed mode range from mode | to mode || and is
easy to handle.

2. Thgre are innumerable fracture criteria in literature
which are partly contradicting.

3. A considerable amount of experimental mixed mode work was
found in literature. The problem is not that there are no
experimental results available, but that the available
results are not reliable.

L. The mechanical properties for plexigla; stated in the
literature differ considerably. Especially the influence of
the straining rate on the modulus of elasticity is not
clearly understood.

5. The critical stress intensity of plexiglas depends on the

crack propagation speed.

O
-

N
~




B A A e Y S AT A A A A S A AT AL A A SR AL 00 A0 S DU R 2 b uul Wl taly Sy sl A G AR A tatly it ath et Sall Skl ot Sath S, “pi. BAL - gan B "RAn i 0 st ol n e
A e O e A i el L p

P PAGE 20
- 5. Plan of Investigation

From these findings in the literature review, it was
decided to do the following experihental work with PMMA: \
;ﬂ 1. Tests with tensile specimens at different straining giﬁ
7{ rates. Specific interest lies on the Poisson ratio and the ;3;
ii dependence of the modulus of elasticity on the stra%ning iﬁi
. rate. Z;i;
2. Tests with CT specimens at different loading rates. As it g?i
takes a high effort to measure the crack propagation speed ' iéé
accurately, it is tried to find a relation between the f:ﬁ
stress intensity rate K and the critical stress intensity Q:;
K'é ) - [ ‘.. ;,
3. Tests with CTS specimens in mode | at different loading I(i;
rates and comparison of these results with those found with ;i;
the CT specimens. ? }
L. Tests with CTS specimens under mixed mode loading. |f the gﬁ[
assumed dépendency of the fractur; toughness on the stress E%;
intensity rate K is proved in tests 2 and 3, K will be kept EE;
constant for all mixed mode loading conditions. E~}
L
E;:
3
3
E:l:
L
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IV Experimental Procedure

1. Material

The material used for the tests was Plexiglas G Acrylic
Safety Glazing, produced by Rohm and Haas, Philadelphia
(PA). All the specimens were cut out of a single half inch
thick plate. As the plate was cast, the thickness varied

considerably.

2. Testing Procedure

........

Table 8 gives the dimensions of the tensile specimens.
AII specimens were instrumented with an extensometer between
point 2 and 3 to measure the elongation. Specimens T1 and T3
were additionally instrumented with a slightly modified
extensometer to measure the contraction of the specimen for
the éValyapion of the Poisson ratio. The results were
recorded on a X - Y plotter.

for the measurement of the modulus of elasticity and the

"Poisson ratio, the specimens were stressed to a level of 11

MPa and then unloaded with a specific displacement rate
(table 9) . The time of the unloading process was measured to
calculate the straining rate. Then the specimens were
loaded until they ruptured. The location of frature was
noted.

The 6 CT specimens were prepared and tested in the

following way: A razor blade was forced into the machined
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chevron notch. Then the specimens were fatigue precracked at’
§ Hz with a controlled stroke amplitude of 0.15 mm and an
initial minimum lJoad of about 65 N. The final crack length
typically was reached after 12000 cycles. The crack front
was straight. The dimensions of the CT specimens are given
in table 10. The specimens were instrumented with a clip.
gage according to ASTM E399 {1} and a load - COD curve was
plotted on a X - Y plotter.

The machine (MTS) in use for the experiments had as
lowest load range 1000 Ibf with a least count of 1 1bf. |In
previous tests with this machine it was found that the load
control in the lowest rénge does not work properly.
Therefore, displacement control had to be wused for al)
tests. Displacement control was used by most other
researchers too {15,21,26,34,37}.

The testing was done with speeds between 5.1 and 63.5
mm/min. In displacement control, the displacement recorded
on the plot is proportional to the time. The time until
fracture initiation found there and the critical stress
intensity K _was used to calculate the stress intensity rate
K. The exact way of the calculation can be found in aﬁpendix
2.

As all the machines and gages in use were in US customary
uni ts, the CTS specimens and the grips were slightly
modified to meet these units. The used dimensions are shown
in figures 4 and 5.

Altogether, 16 CTS specimens were produced and tested. A
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razor blade was forced into the machined chevron notch to
start the crack. Then the specimens were fatigue precracked
at 5 Hz with a controlled stroke amplitude of 0.15 mm and an
initial minimum 1load of about 125 N. The specimens were
Joaded through the holes at the side of the notch and not
through the middle holes as suggested by Richard {8}. The
crack length a = 1.5-in which equals a/W = 0.5 was typically
reached after 10000 cycles. Two' specimens were further
fatigued to a/W = 0.55 and two others to a/W = 0.65. The
crack front was straight, but the crack tip was only by
chance exactly on the center line of the specimen. Most

samples showed deviations of up to 0.1 mm, some up to 0.2

mm. The worst case was specimen CTS! with 1.5 mm deviation
(3.8%). In addition, the crack of this specimen was slanted
in through thickness direction by about & degrees.

The testing of these specimens under mixed mode

conditions imposes some problems. Richard {8] suggests in

accordance with ASTM E399 {1} to use load control and choose

!. f such that the stress intensity rate K in mode | is between IE;Q
r 0.55 and and 2.75 Mpa/m per second. Richard himself used K =

- 3.3 MPavm/s. He further suggests that the loading rate ﬁ

used for mode | should be contained for mode || and mixed
mode loading. The problem now is that K changes for F o=
constant at different angles. |t was shown by earlier works

{95,101,102} that the fracture toughness of PMMA is rate

-«

sensitive. Therefore it is felt that the suggested

procedure gives no clear distinction between the influences
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of mixed mode loading and those of the rate sensitivity.

ﬁ‘ There are three principally different ways of loading the
LS

1.

j specimens under different mixed mode conditions:

1. displacement rate d = constant
2. loading rate f = constant
3. stress intensity rate K = constant

Naturally, there are arbitrarily many ways of loading

- . without any constant magnitude. But these do not seem
logical.
ii Most researchers did their mixed mode testing at a

constant displacement rate {21,25,26,34,37}. As they used
ji many different specimens, the influence of the changing

stress intensity rate is unknown, But for a CTS specimen,

the use of a constant displacement rate is guestionable, as

in this case the stress intensity rate under mode |l loading

is only 29% and 17% of that under mode | loading for a/W =
0.5 and 0.7 respectively. This can be seen in table 11. The
way how tﬁese figures were calculated is given in appendix
2.

Richard {8} used for his experiments a constant loading
rate. Thié is already better, but the stress intensity rate
under mode || loading is still only 28% of that under mode |
loading for a/W = 0.7, as can be seen in table 12.

Hence in the new experiments it was tried to keep the
stress intensity rate K constant. The problem is that the
stress intensity rate is no property of the testing machine

as it is in the cases of the displacement or loading rate.

ettt e e
P AT SP I

a2 e
.

I
A 8T O e Lt
o W PPN L




A AL AN S i s

PAGE 25

To relate the mixed mode and mode || stress intensity rate
to that of mode |, a fracture criterion is necessary.
Because of its simplicity and its good agreement to previous

results, the fracture criterion {8,76,77}

2
Ky Kr1

—_— | 1

K1e  |K11c

was used where it was supposed that Kie = Kie <+ Then the
necessary displacement rate was calculated as stated in
appendix 2. The results are shown in tabie 13.

The constant stress intensity rate condition is equal to
the condition of constant time of loading which was used by
{n}.

The tests were done with .a}splacement control. A load -
LLD curve was plotted. This is sufficient in the case of
plexiglas which has such a low modulus of elasticity (3 GPa
versus 210 GPa) that all deformations of the machine and the
grips can be neglected. ’

After the testing, pictures of the crack tip with
magnification 50x were taken to measure the angle of crack
initiation. |In addition, the fracture surface was examined.

The calculation of the stress intensities K, and Ky was
done using the calibration factors given by Richard {8}, as

stated in appendix 3.
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V Results and Discussion

1. Mechanical Properties

The p]ots for the Poisson ratio and the modulus of

elasticity were straight. For the calculation of the modulus

of elasticity, the average of the cross - section area at

point 2 and 3 was used. In addition to the specific tests
of the modulus of elasticity, this property was evaluated
out of the plots of the rupture tests. The results agree
with a deviation of 3% or less.

The specimens broke at different locations and this may
be because of stress concentrations due to machining. It was
not possible to get consistent values for the ultimate
stress du. Hence the yield strength d,, was evaluated which
shows little data scatter. The results are shown in table
4. The average of the Poisson ratio was calculated to be
0.36.

A comparison with table 7 shows that the new results
agree well to those stated in the literature. The new
results show slightly increasing values for the properties
with increasing straining rate. The growth is about 11% in E
and d,, for an eight times higher strain rate, as shown in
figure 6. In many cases, this might not be neglegible. Hence
the reported increase of E with increasing strain rate could
be confirmed.

Equation (7) given by Williams {95} yields much lower

values for E than found in the new experiments, but this is
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due to the definition. Williams defined the modulus of
elasticity as the secant between the origin and the point of
3.5% strain, while usually the initial slope of the
straining curve is used. Equation (7) predicts a 15%

increase in E for the range covered by the new experiments.

2. Fracture Toughness at Varying Stress intensity Rates

The load - COD plots for the CT specimens were almost
linear and all did fulfill the requirements of ASTM E399.
Preinstability crack growth was not observed, but up to the
stress intensity rate K = 2.15 MPavm/s, the crack
propagation speed was low (range of millimeters per second).
The fracture surface therefore showed the river markings
which are typical for low crack speeds {94}. Only specimen
CT6 (K = 3.78 MPavym/s) showed the smooth fast-fracture
surface. .

Table 15 shows the results for the CT specimens. The
resuits are consistent with Marshall et al. {103} who gave a
K. of about 1.2 MPaVm for crack speeds in tlie range of
millimeter per second.

Then &4 CTS specimens were tested under mode | loading at
different stress intensity rates. Again, the load -~
displacement curves were almost linear and met the
requirements of ASTM £399. Only specimen CTS7 (K = 0.23
MPaVm/s) showed the rough slow - fracture surface, the other

specimens had a smooth fracture surface.
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The results are shown in table 16. All K,c values from

tests with CTS specimens are significantiy greater than
those from CT specimens at the same stress intensity rate K.
This can be seen in figure 7. Also the change from the rough
to the smooth fracture surface happened at a much lower K
for the CTS specimens than for the CT specimens. The reason
for that behavior is not clearly understood. It might be
that'the fracture process happens faster in a (TS specimen
as this specimen is stiffer and more elastic energy is
storgd at the onset of fracture. The crack separation rate
for the two specimens might be different. Chiang and Miller
{43} calculated the crack separation energy rate for ACCT
and SENB specimens and found it to be different. They
attributed the difference to the effect of hydrostatic
pressure which influences the plastic 2one around the crack
tip. Whatever the reason may be, it can be concluded that
there is no unique relationship between the stress intensity
rate and the critical stress intensity.

As the crack speed ‘was not measured in the new
experiments, the statement that the relation between the
crack speed and the critical stress intensity is unique and
independent of the specimen geometry {95} could not be
confirmed. But an analysis of the slope of the test plot

after crack initiation showed that a higher K, was

c

correlated to a steeper falling curve which means a faster
crack speed.

Although the values for the critical stress intensity
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obtained with CTS specimens are generally higher than those

VRS S ST
.

found with CT specimens, they are still within the range
found in literature. The question remains why Richard {4,8}

got a 30% higher value with the same specimen for the same

T

material.
The first reason for this difference is that he used a

l much higher stress intensity rate. A second reason may be

R}

that Richard had curved crack fronts, as can be seen in

.
it a

figures B6 and 87 in {8}. The curved crack front is due to

BRI
P

-

the higher frequency used for fatigue precracking and was
found in earlier tests by Pouiose too. The higher frequency
causes a heating of the specimen which is probably
r;sponsible for the effect. As was found by Towers and Smith —

{114} in a numerical analysis of the CT specimen, a curved

‘o‘.‘-a:-.'»-‘-
LR R ]

crack front which still meets ASTM E399 requirements can

i have an up to 28% higher fracture load than an equivalent

ES straigﬁt crack front. ’

gf In summary it can be said that the critcal stress

i intensity of PMMA increases slightly with increasing stress

g intensity rate. For small variations of the stress intensity
rate, the variation of the critical stress intensity is not

k outstanding of natural data scatter, but a change of K by a

factor 2 or more is not neglegible.

R 3. Fracture Toughness under Mixed Mode Loading

Beside two specimens in mode | which were already
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mentioned in the previous chapter, all specimens were loaded -
at a stress intensity rate of 1.0 MPaVm/s with a maximum

deviation of 15%, as can be seen in table 17. The deviations

ERREE RS  NARRRFLF

are due to inaccurancy in the calculation of the

S o3

displacement rate and scatter of the stiffness in different
specimens.

i OQut of the 16 tested specimens, three (CTS1, CTS12,

- CTS13) had to be rejected. All of them showed the same

effect: The crack growth started slowly at one side of the

!' crack and moved up to 3 mm before the instability condition

was reached. The fracture surface was slanted in thickness

direction. In all cases, some geometrical deviations could

ii be found. As two of the rejected specimens were tested under

mode || loading, it seems that this condition is especially

sensitive to deviations of the specimen gecmety.
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The fracture surface of all other specimens was smooth
(mirror surface) and showed none or. very little (< 0.5 mm)

slow crack growth which then was neglected. The results of

g JTONL N

the mixed mode experiments are given in table 18.
ii K, was calculated as the average of rhe results of
specimens CTS2, CTS9, and CTSI1 and had the value 1.26
‘. MPaVm. The evaluatiun of K“c is a little vague. First of all,

out of the 5 tested specimens 2 had to be rejected. The
result of the remaining 3 is not that consistent either. The

mean value of the two specimens with a/W = 0.5 is 1.39 MPavm

oy e 8

. .’ LRI
. I

'-‘.-'n .. I‘I i

R which yields K, = 1.10. Taking the specimen with a/W =
e

0.65 in account, the average of the three specimens is K, =
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1.35 MPaVm which gives K, /K. =1.07. In any case, K,/K.> 1.
This is much more than the values found in literature for
PMMA.  As already mentioned, most researchers found K /K, to
be around 0.9 (table 6). Only Phadke et al. {21} found K, /K,
to be up to 1.0, depending on which mode 1| specimen they
o used for the evaluation of K. But the new results
F correlate well to results found for steels (table 3),
aluminum alloys (table 4) and d{fferent other materials
\ (table 5). For many materials K, /K, around 1.1 was found.
Ei The reason for this discrepancy between the results for
PMMA and other materials might be that most researchers

neglected the influence of the stress intensity rate on the

critical stress intensity of PMMA. Richard {4,8} found Ki/K _ .
= 0.93, but as pointed out ealier, his stress intensity rate
for mode )| was just about 30% of that for mode |. Assuming
that the dependancy of the «critical stress intensity on the
stress ‘intensity rate is the same for mode [{ as it is for
mode | and also assuming that the dependancy can be
described by a line in the semilog - plot figure 7, the
e is about 7% too low. A correction for

stated value for K

this would result in K, /K. of about 1.

A problem that could have influenced the new results is
crack closure. Especially for a/W < 0.55, there is some
negative stress intensity K, for o= 90° (see figure 5 in {2}
or figure 78 in {8}). This might have had an influence on
the results with a/W = 0.5,

For a/W = 0.65 and o« = 90°, K, is virtually zero. But as
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the tested specimens had an extremely long fatigue crack -
(16.5 mm), even a very small negative K, may influence the
results. This is confirmed by Béper!e {115} who made a new
FEM analysis of the CTS specimen. .Although he found for « =
90° K, to be almost .zero at the crack tip, K, got
increasingly negative along the crack flanks. As the
surfaces of the fatigue crack are in touch with each other,
they get pressed together due to the negative K,, causing an
unknown error in the results. The crack closure problem may
be increased by the inevitable out of middle location of the
crack tip. It is therefore felt that a mode |l specimen
should®have a small amount of positive K, to reduce crack
closure and friction problems. This requirement is met by
the modified CTS specimen {k2,116} (see figure 8).

As can be seen in figure 9, the mixed mode fracture

criterion

2
X1 . K11
Ko K11

=1

suggested by several authors {8,76,77} gives a good fit to
the experimental results. This criterion can be transformed

into {8}

1 2 2
KV = 2[ KI + \/KI + u(a‘KII) :]

where K  is the comparative stress intensity factor and o=

(K, ./K,J - The safe - design condition is then

Kvs KIc

A look at table 2 reveals that just the criterion by T

1%
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irwin {61,62} and the J-integral {63-65} predict | =1
and therefore promise to give a reasonable fit to the data.
But as can pe seen in figure 10, nejther one brovides a very
good fit to the experimental data.

Another criterion of interest is the ASME Boiler and
Vessel Code {79} because of its simplicity. As can be seen
in figure 10, it gives a reasonable fit to the experimental
data up to n = 0.5 (B = L5°). Beyona that, the predictions
are not accurate, but at least they are on the safe side.

tn a K, /K, = Ky/K, plot, a vector

v VKR K L e
KIc
is defined as the distance of 2 certain point to the origin
of the coordinate system. Th;; vector also can be used to
describe the behavior of a material over the mixed mode

ratio n. A fracture criterion K,=K, f(n) with the safety

condition K, < K,  can be evaluated. For the new

experimental data, the function

£(n) = 1 + 2.93%n - 15.70n%+ 24.81n3-11.97n"

was found to give a reasonable fit , as can be seen in
figure 11, Although this kind of piot seems very Qnusual,
it has some advantages, especially that the fracture angle
can be drawn in the same plot or at least with the same x -
axis so that the relation between the critical stress
intensity and the frature angle is better visible.

The angle of fracture initiation in mode |! was found to

be - 70°. This confirms the criteria by Erdogan and Sih {13}
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and Nuismer {55}, while the other criteria make more or less - -4

E
A
Fe. different predictions. The measured fracture angle with the el
A o
o Erdogan and Sih criterion and the empirical criterion by -}ja
4 :"- N

)

Richard {8} are shown in figure 12, The measured fracture
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angles of beryllium (V = 0.0) {47} are given in the same

" iy
.

figure. It is remarkable that they are very close to the new '
results despite the big difference in the Poisson ratio. It ‘n-
'ij - seems that the angle of fracture initiation 1is independent

of the Poisson ratio.
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VI Conclusions

1. The thickness of the CTS specimen should be symbolized by
B and not by t, because t can easily be held for a sfmbol
for the time. B is used to describe the thickness of the CT
specimen {1}, the CS specimen {49-51}, and the new compact
shear (NCS) specimen {117}, and there is no reason why this
should se changed.

2. The testing of the specimens should be done in a way that
the comparative stress intensity rate Rv is constant for all
mixed mode conditions and not with a constant loading rate;

To calculate Rv. the criterion

e . i, [ -
sz 2[K1¢ “ +{L:(.I J ‘ -

I I
as a first approximation is sufficient. Even if it turns out

that the implied assumption K, = K_ is not accurate, the

e
difference in the stress intensity rate over the mixed mode
range Qil! be much less than with “just taking a constant
loading rate.

3. As there are some crack closure problems in pure mode |1,
the crack should be as short as possible. There should be
set not only a lower limit for the crack length {8} but also
an upper. In order to cut the length of the touching
surfaces, it has to be considered whether a straight through

notch should be used instead of a chevron notch. Maybe the

original CTS specimen should be replaced at all by the

el

.i' ’ modified CTS specimen {42} for mode || testing. The modified
et

e

%i CTS specimen has a slightly positive K, for ot= 90° {116}.
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L. More research is needed to ffnd out the influences of

deviations of the specimen geometry. It is not enough just

to keep the machining tolerances, as the fatigue crack tends °

to grow away from the center line. Relatively small
deviations already showed a significant effect.

5. Both the mechanical properties and the fracture toughness
of PMMA are slightly sensitive to the loading rate. Ffor
changes of more than factor 2 in the loading rate, the
deviations are not neglegible.

6. The fracture criterion

. 2
Ky N K11
Kie | K11c

"
[

gives a good fit to the experimental found mixed mode
fracture initiation.

7. The ASME Boiler and Vessel Code gives a reasonable fit to
the experimental data up fo a crack inclipation of 45°, The
predictions for steeper inclinations are not accurate but
they are on the safe sidea

8. The criterion of maximum tangential stress proposed by

Erdogan and S£ih gives the best fit to the experimentally

found angle of fracture initiation. |t seems that this angle

is independent of the Poisson ratio.
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:——KII n:—-——I——. : 1 !
P KI ‘(I"KII
90° 0.0 0.0 mode I
?75° 0.268 0.211
60° 0.577 0.366
b5° 1.0 0.500 mixed
mode
30° 1.732 0.634
15° 3.732 0.789
0° (o0 1.0 mode I1II

Table 1 Relation between ﬁ. m, and n

Poisson .§ll9_ mode II
ratio KIc -8
Erdogan and Sih [13] i 0.87 70.5°
Nuismer [55] i 0.87 70.5°
Hussain et al. [38] i 0.63 75.2°
Ametoy et al. [56] i 0.81 77°
Radaj and Heib [57,58] i 1.32 99°
sih [16,17,59] 0.36 0.85 84.6°
Di Leonardo [60] 0.36 0.85 -
Irwin [61,62] i 1.00 -
J - integral [63-65] i 1.00 0°

legend: i independent

no prediction

Table 2 Prediction of different fracture criteria for

mode II
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i 1 2 3 | & 5 67 |8 2

Material |Spec|T[C] nminlnma.x A Ko |Kg1e K—;-:S-

3 Ueda [25] M SMSL |ACNT| RT|0 |0.5 | 12| = | - | -

. M SM4l |CNBT| RT|O 0.5 81 - - -

5 Shah [18] H 4340 | cc?| RT| O 2|80.4| - -

,E H 4340 |Tubel RT| 1 2| - |88.3

> H 4340 |accrbisolo  [0.79| 8|u45.7[s9.7]1.1
Pluvinage [19] |H 18MnMoV|ACCT| RT|0.46|0.63| 3| - | - -
Chiang [43] H Gc-4 |SEcH RT|0 |0.66| 8|49.6] - | -
Theocaris {33] |S = ACNT| RT|O 0.92{110{. - - -

1) doubtful method of determining Krr,
Table 3 Mixed mode results for several steels

Legend to tables 3 to 5

column 2 M mild steel

H

high strength steel )

: S'= spring steel

?, ' column 3 specimens, see chapter III 1.
ﬁg column 4 RT = room temperature

! column 6 A = number of the tested specimens

column 7 + 8 values in MPavm
- % =value found in a figure

- =znot stated in the paper
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1 2 3 b 5 7 8 9
KIIc
Material |Spec |T(T] NoinlPnaxl® Ere (¥1Ie -
[o]
Tracy [28] 7075T6 ACCT| RT {O 0.63|122 - - -
Boeing [86] 70757651 [accT| - |0 0.6 | &4 [70.0{70.0(1.0
207577651 " | RT [0 |1 4 75.5(89.2|1.2%
Liu [20]
202473 1| RT |O 1 3 i4.2|74.711.0%
Jodin [12] 2024 - |- |- 51- |- |-
Wilson [23] 7178T651 |ACCT| - |O 0.8%|14% - - -
Pook [14] DTD5050 |ACNT| - |0 0.63|11 31.5]| - -
Pluvinage [19]|AUtG ACCT| BT |0 0.85|10| - - -
Theocaris [33]57S SNT | RT |0 0.92]119 - - -

1) shear panel |
2) w%th a CCT Spec?men, Ky, = 89.2 and KIIc/KIc = 1.0
3) with a CCT specimen, K;, . 99.4 and K

legend see table 3

Table 4

11¢’¥10

= 0.75

Mixed mode results for several aluminum alloys




%
1 2 3 |w 5 62 [8 ]9 -
P KII —
z Material |Spec|T(T]|ng;n|npa.| A |K1o |K11cl% <
< Ic
2 Kordisch [27] |Glass acer| - o [o.92y 13 - | - | -
PU AccT| - o 0.857 28] - - -
Richard [#] |Araldit BlcTs | RT |0 |1 | 20lo0.59|1.46|2.48
Theocaris [31]{PCBA ACNT| RT |0 0,92|110{7.0" | = -
. Theocaris [33]|Bronze” |ACNT| RT |0 |0.92[300| - | - | -
3 Lemant [29] |Zinc ACCT |-196|0 [0.63| 8| - | - | =
- Awaji and G?sazs //|BD [ RT |0 |1 13(0.72(0.83|1.15
| Sato (6] losaon lap |rr o |2 9/0.69/0.76]1.11
o _ G 7477 |BD | RT |0 |1 19(0.9411.09|1.16 o
2 G SM1-24 |BD | RT [0 |1 7|0.81]0.89|1.09 2
Plaster [BD | RT [0 |1 710.13|0.15]1.14 T
tarble [0 | RT [0 |1 | 10[0.93(|1.05|1.13 T
,:"_:';.
. 1) calculated from given data =
: 2) three different types of bronze - LR
. 3) G = graphite e
: legend see table 3 .
. Table 5 Mixed mode results for various materials
.“,‘-i
) I
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1 2 3 (4]5 |6 819 |10 |11
Reference Spec| B d Npsrfmax A KIc KIIc ;ig:
Richard [4] cTS gg Fl 2 Info |1 | sulr.66{1.520.93
Ewing [11] % |« R ¥ |=| - |- 50(1.80| - -

Tube |6.3{-| » [N] 0 |1 38'(1.121.0" [0.89
Erdogan acct|3.0l-| - |p| o |o.73] s5o.92] -

& sih [13] | 1Ps [3.0]-| #|- 9l - |o.82 0-89
williams [15] | AccT|3.2(R|5.0|Y| 0 [0.981150"1.37| - -
Phadke [21] cT |31 |0.2|N 150.99| -

cs |3:9|w(o.2|N 13] - Jo.90|""%°
cs® 1s.0|n{o.2|N 4| - [0.67%
TIPS |2.8|N[0.2|N 4 - |0.99
ACNT %g wlo.sln| o lo.ss| olo.es| - [F°
Ueda [25] ACNT|4 |N| - |-]| O {0.85] 24| - - -
CNBT |4 |N| - |-] 0 [0.85| 18] - - -
Seidelmann [26] ACCT|(3.0|F|[0.1(% 0 10.73 45'1.u6 - -
XKordisch [27] | AccT| - |=| = -] o Jo.98 (117" - - |0.9°
Theocaris [33] | ACNT |1.5|N| - |-| 0 [0.92{110] - - -
Wa [34] ACNT |3.2|{N{1.3|N| O [0.98] 60| - - -
Ewing [37] SAECT [3.0(R[5 |-| - | - 10|- |- |-
SEC4B|6.0|R(5 [=] = | = 10| - - -
Radon [40] CCBT [4.0|R| ™ |Y 2F1.51| - -
Leevers [41] CCBT| = |={ - |Y L11.87| - -
Raju [44] D=C3B| - [-| - |- 2| - |1.36] -

Table 6

.........
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PP P ST AP |

iixed mode fracture data for PiiMA stated in literature
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Footnotes to table 6

im

1"::.'

e rr.y
i’

1) load control ¥ =4kN/s

2) spher:.cal shells & 178 - 270 mm under water pressure

3) constant time of loadmg 15 s

Ry

4) constant time of loading 75 s

5) loaded by running water

6) only 47 specimens evaluated for Ki» Kpp because of

' preinstability crack growth

7) in table 1 of that paper, B=3mm is stated

8) the ligament in front of the crack tip was reduced to
2.5 mm. The results are probably not valid because of the
uncertain state of stress at the crack tip and possible
resicdual stresses due to grinding.

9) slow crack growth only in mode I .

10) constant stress intensity rate K= 0.2 MPavm/s
11) 6 specimens at px/py= 0, 17 at px/py> 0

Lezend to table 6

column 3 B =thickness of the specimen in [mm]

column 4 introducing of the crack
L)

F = fatigue precracking -
R = razor blade forced into the notch
N = machined notch

column 5 d = dispiacement rate in [ng]

column 6 did preinstability crack growtth occur?
N=no, Y=yes, P =1in some specimens

column 8 A= number of the tested specimens

x = value found in a figure

=not stated in the naper e
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SRS 1NN

Reference E v Su1t]%.2 |t e
- (GPa] (MPa] [MPaiEs]
Dubbel [87] 2.7 <3.7 - |s0-77| - |- -
Encyclopedia (887 |2.6-3.1 0.35 W8-76} =« |-} =
Mascia [89] 3.12 0.33 - - (00} =
Ewing [11] - 0.35 - - | -
Richard [4] - 0.30 - - | =] =
Richard (7] - 0.36 - - |- -
=wing [37] 2.0 0.43 - - |- -
Buhelt [90] 3.41 0.33 - - (80| =
Preece [91] - 0.35-0.37 = - | =
Zimmermann {927 5.0 0.35 - - | - |high
Kausch [93] 3.3 - 65 | - |- |-
Leevers [94] 2.9 - 80 - |- -
Rohm & Haas 2.90 0.35 72 - - -
Theocaris [33] 3.4 0.34 72.9|64.3 |- | -

Table 7 Mechanical properties of PNMA stated in literature
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X 13" (1854

o 41" (104.1)

131330)

- W =

[

v | {(254)

st

S1:2

width (mm] thickness [mm]
1 2 3 b 1 2 3 b
Tl 12.5|12.6 | 12.6 | 12.7 | 12.0 | 12.0 | 12.1 | 12.2
T2 12.5{12.6 |12.5 |12.7 | 12.1}12.1|12.0} 11.9
T3 12.7 [ 12.8 ] 12.9 {13.0 {12.1|12.1 | 12.0 | 11.9
TL 12.4 | 12.4 | 12.5 | 12.5 | 12.2 | 12.1 | 12.1 | 12.0

Spec

Table 8 Dimensions of the tensile specimens

d é location of
Spec | [ mm %
Pﬁ?ﬁ] [min] fracture

T1 0.38 | 0.3 at b
T2 0.76 0.6 at 4
T3 3.0 2.4 between 2 and 3
T4 1.5 1.2 between 3 and 4

Table 9 Testing conditions for the tensile specimens

...........
............
....................




Spec W a a/ B
[mm] (mm] (mm]
CT1 28.2 0.555 12.0
cT2 - 25.1 0.495 11.7
cT3 50.8 24.9 0.490 11.7
CT4 (2.0) 25.4 0.500 11.7
CT5 25.1 0.495 11.7
CT6 31.0 0.610 11.7

Table 10 Dimensions of the CT specimens

Ty
PRSI
,-"‘..;':.v.y‘

a/"=0.51a/"=0.7
0 *0 0 0
0° 1.0 1.0 1.0 1.0
15° 1.0 0.96 0.94 . 0.93
30° 1.0 0.78 0,71 0.69
kg 1.0 0.67 0.56 0.51
60° 1.0 0.56 0.40 0.34
75° 1.0 0.56 0.33 0.24
90°. 1.0 | .0.29 0.29 0.17

constant displacement rate d

Table 11 Relation between d, F, and K for a
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0°
15°
30°
b4 5°
60° .
75°
90°

1.0

1.04
1.30
1.49
1.79
1.79
1.68

1.0
1.0
1.0
l.0
1.0
1.0
1.0

1.0

0.98
0.92
0.83
0.72
0.60
0.49

1.0
0.97
0.89
0.76
0.60
0.43
0.28

Table 12

Relation between 4, F, and K for a

constant loading rate F

X
KO

a/W=

=0.7

»
¥y

0.5
<
4,

a/d
)

- —

i
0

4
d,

1.0
1.0
1.0
1.0
1.0
1.0
1.0

. 1.0
1.02
1.09
1.20
1.39
1.67
2.04

1.0

1.06
1.41
1.78
?.50
2.99
3.45

1.0

1.03
1.12
1.32
1.67
2.33
3.57

1.0

1.07
1.46
1.96
2.94
L.18
5.88

Table 13

Relation between 4, 7

constant stress intensity rate K

, and K for a
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[GPa] [MPa] (vpa) | [s) EJ@—]

3.27 0.37 75 - 57 18 2.4
3.15 - 69 55 35 1.2
3.03 - 69 56 70 0.6
2.94 | 0.36 58 51 140 0.3
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Ny Spec. d K

[ mm
mi

cT1 5.1 0.32 24l - 1.04
cT2 5.1 0.33 290 1.05
CT3 10.2 0.71 315 1.13°
cT4 15.3 1.09 316 1.16
cT5 30.5 2.15 317 1.15
cT6 63.5 3.78 232 1.25

b

c KIc
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Table 15 Testing conditions and results for the

CT specimens (mode I)

S»ec. a K F K 15;
c “Ic s

[mm ] [MPafHJ [ kN] [MPavm ) ' Eiﬁ

min L s B

CTS7? 2.5 0.23 1.01 | 1.12
cTse | 10.9 0.96 1.12 . 1.23 o
CTS2 | 10.9 1.00 1.19 1.29 ' ‘;ﬁ
CTS11| 12.7 1.25 1.17 1.27

Table 16 Testing conditions and results for the

CTS specimens (mode I)
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Spec.

-
w

B

(mm)

d

Jnm
min

Ky

PaVm

s

00

CTS9
CTs2
CTS1l

0.5
005
0.5

11.8
11.9

12.0 .

10.9
10.9
12.7

0.96
1.00
1.25

15°

CTsiz2

0.5

11.6

11.9

l.01

30°

- CTS14

CTS5

0.5
0.55

12.0
12.2

“15.2

15.2

1.10
1016

150

CTS10

0.5

11.7

1905

1.03

60°

CTsk

0.5

11.7

25.4

0.97

75°

CTS8
CTs6

0.5
0.5

12.L
12.6

29.3
29.3

0.92
0.88

i)
r .
a2

90°

CTS15
CTS3
crs1
CTS16
CTS13

0.5
0.5
0.55
0.65
0.65

12.2
11.6
11.7
12.3
12.8

38.1
38.1
38.1
34.6
34.6

1.09
1.09
1.09

0.99
1.04

“» '.’ 't. sy ‘.‘_‘n s

Table 17 Testing conditions for the CTS specimens

(mixed mode )
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Spec.

(kN]

Ky

[ MPavm]

I1
(MPavm]

00

l.12
1.19
1.17

1.23
1.29
1.27

15°

invalid

30°

1.52

1.22

1.38
1.37

0.39
0.3k

Lge

1.52

1.14

0.57

€0°

1.60

0.85

0.76

75°

CTs8
CTS6

2.20
2.28

0.53
0.53

1l.10
1.09

90°

CTS15
CTS3
CTsl
CTS16
CTsS13

2.67
2.60

1076

(-0.06)

(~0.08)
invalid
0

invalid

|

1.37
1.42

1.25

69°

70°

Table 18 Results for the CTS specimens (mixed mode)
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S1 ACCT, ACNT

§=o—| o

S2  SAECT

S3  CCCT

S4  CCBT

S5 SEC3B

S6 SECLB

Figure 1 Mixed mode specimens
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Appendix 1

.
-

The citerion {8,76,77)
. 2
-E'I—'#-‘('LI_' =1
KIc KIIc

can be transformed in the following way: Multiplying both

sides by K2 and adding (1/4)K3 one obtains

I 2 1, 2
C -

2 ,1,2
_.K
I'Ic KIIc c

I 47T

K 2
+ [—JEL—] KI2

1 2 l, 2
(Ky. = 3K:)° 2 £XK
Ic - 271 T KIIc I

I

Introducing oy= Kg/Kk and extracting the root, this finally®

yields

1l,, . . 2
KIC = '2-(‘{1 + EI + 4(“1‘11) )

-

The ASME Boiler and Vessel Code {79} gives the criterion

KIc = deasinp

With K, = ofTa sin?B . ‘for an infinite plate, one obtains

With B = arctan(K,/Kn) and applying the reépective

trigonometrical formula, this yields

,KJ_ 1.5
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< ’ Appendix 2: Calculation of the Stress Intensity Rate K

.-

The calculation is done for specimen CTL as an example.

]
-_‘ l.' ‘.'

¢

This specimen broke at the critical stress intensity K =

s
-

1.16 MPaVm and showed there a COD of 0.439 mm. Neglecting
the deformations of the crack flanks, the point of measuring
the COD has the distance L, = 1.625" to the crack tip, while
the load line has L,= 1.00". LLD and COD are related by the
. simple geometrical relation

- LLD - EZ
CcD L,
which yields LLD = 0.270 mm at the initiation of fracture.

. In displacement control, the LLB is related to the

displacement rate d by
" LLD = 4t
- with which the time until fracture can be calculated:

. ' —LL’.D: ’
> tc = 7§ 1.07s )

_ﬁ The average stress intensity rate K then is calculated by

K
. kK = 2% = 1.09 MPav@/s
(o

The calculation for the other CT specimens is done in the

same way.

ol For the CTS specimens, the LLD was recorded and therefore

[y
.

the conversion from COD to LLD is not necessary.
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P
~
L)

o~ It is intented to keep K constant for the mixed mode -

2l L4

loading. The problem is that a relation between the machine

parameter d and K has to be found. The loading rate f is

b . related to d by
B .
] ani

where i is the slope of the load ~ LLD plot. The relation

between K and F is given by

=
[]]
trie
x?]
mk
L
<

where W is the width of the specimen, B is the thickness,

and Y, the comparative calibration factor. Richard {8} made

the FEM calculation and got the calibration factors Y, and

Y, for the mode | and mode |I! component respectively (see S
o appendix 3). These factors have to be related by a fracture iﬁ;
y criter}an. The criterion ) ) 23;3
. I . I = 1. s
_ K1e [KIIC] u
' was c!osen and the assumption K, = K\, was made. With this ) ’ }i i
.é criterion, Y, can be calculated by :
- Y, = gy P sl
:2 This has been done for a/W = 0.5 and a/W = 0.7.
_; The last remaining unknown is the slope i which has to be
? .ﬁtj determined experimentally. For this reason, one specihen was

.f A loaded to about LS50 N and then wunloaded, both at a
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: :{':f displacement rate of 2.5 mm/min. After the final testing, \,:
> the slope found there was compared with first results. The 5._-"
s results agreed reasonably, only for pure mede |1 a larger &SL
x. deviation was found. The average values for the slope, which :::
- depends on the specimen geometry, together with the
calculated comparative calibration factor are given il;l table
19. Tables 11 through 13 are calculated with these data.
Yv i
_' x a/W=0.5|a/W=0.7 [N/m]
0° 2.84 6.26 5.2
15° 2.77 6.08 5.0
30° 2.60 5.56 L.o
Ls° 2.36 b.7u 3.5
_ . 60° 2.05 3.75 2.9
: 75° 1.70 2.70 2.9
. 90° 1.39 1.77 3.1

Table 19 Slope i and comparative calibration
factor Y for the CTS specimen
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Appendix 3

Ky

K11

where “
specimens

following

= F

and “

yra
WB

- oina
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S

11

To calculate K, and K,, Richard {8} gives the formulas

are the calibration factors for the CTS

eviuated by a FEM calculation.

values {8}

ﬂ and ﬁl have the

a/W=

0.50

a/i=0.55

a/W=

0.60

a/W =0065

a/W=0.70

1y

11

e

1y

T1

I11

bS:

11

1y

11

39°
L5°
60°
75°
90°

2.84
2.72
2.42
1.95
1.35
0.65
0.08

0.00
0.36
0.69
0.98
1.20
1.34
1.39

3430
3.22
2.87
2.33
1.63
0.81
0.05

0.00
0.38
0.73
1.04
1.28
1.43
1.49

b.02

3.87
3.L6
2.82
1.99
1.02,

0.02

0.00
0.40
0.73
1.11
1.36
1.52
1.58

L.o4
L.76
b.27
3.48
2.46
1.27
0.00

0.00
0.42
0.82
1.17
l.44
l1.61
1.67

6.26
6.05
5.42
L,L2
3.13
1.62
0.00

0.00
0.45
0.87
l.24
1.53
1.71
1.77

Table 20

Calibration factors for the

CTS specimen
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*Prediction of Plasticity Characteristics for Three-Dimensional

Fracture Specimens Comparison With Experimeqﬁ}“a—» N
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By: E. T. Moyer, Jr., P. K. Poulose and H. Liebowitz.

Accepted for publication in the International Journal of

Engineering Fracture Mechanics, October 1985. : :;:
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e ABSTRACT

.1A center-cracked panel of 7075-Aluminum alloy which has

0
AL A PLI I

overaged from the T651 condition was loadéd in tension and
subsequently unloaded to zero applied load. The permanent

surface deformation was measured close to the intersections of

the crack front with the free surfaces. The permanent

deformation (being a good indicator of the extent of plastic

5; deformation) was used to measure the accuracy of finite element

- analyses.. cortrd ~

The same specimen was modeled using 20-node

three-dimensional isoparametric elements. A fully incremental

LI T T

elastic-plastic formulation was employed in the stress

analysis. The residual surface deformations after unloading

were compared to the experimentél results.
The average experimental results compare quite favorably rfif
with the finite element predictions. The average results were . o

employed to minimize the influence of material inhomogeneity,

load misalignment, and lack of symmetry in the fatigue crack.

i

The scatter in the results from measuring the different sides is

discussed.

L
¥ e

~
"
~
N

\

~
r
~

B
»
S
F}
a, 4,

I}

[N 1: .
e
Y

Y

.

o
LA

a4

1




INTRODUCTION

5 Over the past 35 years, the field of fracture mechanics has
evolved and developed into an important and useful tool for the
design of engineering components and structures. Several major
problems dealing with the criticality of cracks in engineering
components and structures can now be answered with gréat
accuracy. Specifically, problems involving straight cracks in
brittle materials undergoing Mode I deformation only can be
accurately predicted. Most problems which occur in practice,
however, involve materials which are ductile in the loading
applications for which they are employed. Many cracks are also
initiated in sites which involve complicated loading which
involve more than a single fracture mode. Finally, most
problems arising in application involve geometries which can not
be accurately approximated two-dimensionally. The major
research in fracture mechanics today, therefore, is geared
toward addressing the issues of ductility, mixed-mode loading

and three-dimensionality.

The issue of plasticity and ductility in fracture specimens
has long been a concern of researchers. Many attempts have been
made to propose fracture criteria which account for ductility

and to develop numerical tools -0 perform stress analyses. The

L

development and refinement of the finite element method has
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2 "*
greatly aided the progress in this area. Many two-dimensional Ei;
studies have been performed using elastic-plastic finite element 525
modeling. While much of the early work has been demonstrated ﬁ;ﬁ
erroneously, several accurate computational procedures are now 53;
available. The area of failure prediction has not been as i?f
successful as the area of stress analysis. No viable ductile i%f
fracture criteria have been proposéd which pass the tests of éfz
specimen and geometry independence, consistent and theoretically ﬁf
sound formulation, and reproducibility. The best that can be
said for the existing criteria is that for limited realms of éi;
applicability (usually vary within 10-15% of the range of B
brittle criteria), the proposed methods offer conservative
estimates for failure loads which are not as strict as the !:;
brittle predictions. It is important to recognize at the outset Ef“
that elastic-plastic fracture parameters (e.g., J-integral, . f%f
CTOD, CMOD, etc.) can either be shown to be theoretically E;g
invalid for true plasticity problems, or, are simply ;12
experimental observations which not_do pass the test of specimen ;{i
and geometry independence. é;;

During the past three years, the authors have focused their :ﬁ?
research on addressing the three-dimensional aspects of ductile f;?
fracture. A major first step has been the development of an é}i
accurate and theoretically consistent computational approach to T
the stress analysis of three-dimensional fracture specimens. In E;

E:
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a series of recent papers [1,2,3], the effect of specimen éi
thickness, material hardening characteristics and mesh g;
characteristics have been investigated. These results give much Eﬁ
insight into the necessary properties for ductile fracture %ﬁ
criteria. While no new criteria have emerged to date (either jé
from the authors or others), the groundwork for analyzing and f;
assecsing criteria has been established. :;
A major problem with ductile fracture problems in %;
three-dimensions is the establishment of the accuracy of the if
analysis. Convergence studies are extremely costly and only é;
show the consistency of the approach. They in no way guarantee E;
agreement with the behavior of real materials. To address this 2
problem, the study presented in this paper compares the
deformation predicted from a full three-dimensional incremental Fﬁ
plasticity finite element analysis to the deformations measured }Z
in the laSoratory. A center-cracked panel was chosen for the iz
study for two reasons: first, the authors' previous studies .E
have been performed on center-cracked panels and second, the ' .
specimen is easierito model with finite elements as the effects
of the loading holes are easier to account for (by using an E;
accurate gauge length). While a successful comparison does not X »
guarantee the accuracy of any given study cther than the
present, it is the most rigorous way of establishing the ' E;
validity of the approach and &emonstrating the qualitative if
agreement of the predictions made previously with the behavior Ei
L

of real fracture specimens.
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S ELASTIC-PLASTIC FINITE ELEMENT FORMULATION

The stress analysis in this study is performed utilizing the
finite element method to solve the basic elastic-plastic
governing equations for the deformation of continuum solids.

J2 flow theory plasticity‘is employed with the standard

" associative flow law. The Newton-Raphson, or Tangent-Stiffness
approach is employed in the finite element formulation to handle
nonlinearities. The Updated Lagrangian coordinate system is
employed to handle finite strains. The formulation of all
equations is outlined in tpis section.

The Jz flow theory of plasticity assumes that the material
in question yield, or starts deforming plastically when the
“"effective stress" (or von-Mises stress) reaches a critical
value (called the yield stress). Prior to the onset of
plasticity, the material is assumed to behave linear
elastically. Subsequently, the deviatoric stress components are

related to the deviatoric strain rate throdgh the tensor relation

7 d' = R N
e yd
1 +vS + £(o ) S' o ‘
Zz ij e o
g > 0. o
. e
e - 4 b (1) RS
ij -
1 §  (otherwise) | £
+ Vv otherwise -
—E  ij
\ /
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‘ where ejj are the deviatoric strain rates given by :
.
;"
: . . . .
p :. e = € -1 € é ( 2 ) .
1) ij 3 pp 1ij N
=
y Sij are the current deviatoric stress components given by }&q
. o
- et 4
- -l
. S =90, -1lo & (3) Lt
- ij ij 3 pp i) o
- y

»
A

1 Ve
' . .' "‘!
E P oo

Sij are the deviatoric stress components measured relative to o
% the current yield surface center given by
X
., t
i‘ Sij = sij - aij (4)
-
aij are the coordinates in stress space of the current yield
ﬂ; surface center, °ij are the Cauchy stress components, €ij are
E the "true' strain components (discussed in a subsequent
"
section), O is the effective stress given by N
- o 2V3IS S (5)
E e Z i) ij
5 and oé is the effective stress measured relative to the current
o yield surface center
.. g =38 S . (6)
" e Z ij i)
:': o N
R
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The function f(oe) is derived from the uniaxial stress-strain
curve and is consistent with the Associated Plasticity Theory (a
complete discussion is given in Reference [4])). Derivation of
f(ae) for a multilinear representation of the stress-strain
curve will be discussed subsequently.

For plastic strains which are incompressible, the
hydrostatic plastic strain rate is zero. The total hydrostatic
strain rate, therefore, is related to the related to the

hydrostatic stress rate by

€ =1-2va (7)
PP ~ E PP

Engineering materials exhibit different types of uniaxial
hardening behavior when subsequently unloaded after being
plastically deformed. Generally, the behavior falls between two
extremes called kinematic and isotropic hardening. The uniaxial

representation of these behaviors for a bilinear material are

shown in Figure 1. To allow for various hardening behaviors in
the multiaxial formulation, the yield surface is permitted to -]
move and expand under certain constraints. These motions are

controlled by a single parameter, B8, which can be varied from 0 ;iﬁ

to 1. A value of zero represents isotropic behavior and a value
of 1 represents kinematic behavior. The resulting yield
surfaces in a three-dimensional principle stress space are shown
in Figure 2. The yield surface center moves at a rate governed

by

............
---------
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Figure 1: Uniaxial Bilinear Representation of Kinematic
and Isotropic Hardening.
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385 _ 8 S /(o) o =0
ij e

V4 k1l kl (] yd
a = .
ij o >0
e
0 (otherwise)
0<B <l
(8)
B = 0 » Isotropic Hardening
B =1 » Kinematic Hardening
L
o = 20 + 2 B(o -0) (9)
b4 Yy max y

To allow for finite strains and rotations, Updated
Lagrangian approach is adopted [5]. The coordinate system is

convected with the deformation. In this coordinate system, the

“true strain' rate is related to the determination rate (or

velocity) through

PP————. v
[T A
. P

I

.

o =C 10
ij ijkl k1 (10)

In the absence of rotation the stress tensor is related to the

strain rate tensor in the classical manner, i.e
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This stress measure is the Cauchy stress. Under finite

rotations, the stress tensor is not invariant. At zero

T
-
.

strain rate, the stress rate is given by where W are the i
N rotation rates I;}“
“ :T: ',::-
. . . . oL
‘ o =W o -W o (12) f
. 1) 1p PJ P) 1P X
= o
i The total stress-deformation relation is, therefore, . iﬁi}

=C e _+W_ o -W o (13)
ij ijkl k1l ik kj kj ik

;; Equations (1) - (13) form a complete incremental : Ef;
i representation of finite plastic deformation. It only remains, Eﬁ:
§ therefore, to quantify the uniaxial behavior through the if

function f(ae). There are many functional ways to represent ;i
;i uniaxial loading behavior. From a computation standpoint, a ?2;
? multilinear representation is easily implemented and, by :ié
: allowing for enough segments, can be arbitrarily accurate. é;i
tj Consider the multilinear representation of a true stress-true Er%

e
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strain curve shown in Figure 3. The functional relationship

between the stress and strain are given by

a a a
=z l (0. - o 2 (0, - o ... m (o -0
crgrgt O 9) g gl o’

(14)
g <o <o
m - m+l
The plastic strain rate, therefore, is given by
¢ =a o /E (15)
P m e

Using equation (1) and recognizing that for uniaxial
deformation, effective quantities are proportional to the

uniaxial components, the function f(ce) can be reduced to

E(oy) = ag/Eq, (16)

The function is only linearly dependent on tHe current slope of
the uniaxial curve. By specifying enough segments, virtually
any hardening behavior can be accurately described.

Equations (1), (8) and (9) provide the fundamental
relationships between stress and strain rates. The equilibrium
conditions (governing equations) for a continuum body in the

absence of body forces and inertia effects can be written as
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with the boundary conditions
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and (18)

=
]
= e

on S Rk

where T; are the specified loading rates on the boundary o

»
-

- experiencing applied tractions (St) and u; are the 555

velocities specified on the remainder of the boundary (Sy). :

Equation (13) provides the fundamental relation between ok

the stress state and the deformation gradients. For many
problems in application the assumption of ''small strain'

introduces minimal error (mathematically, this means assuming

. infinitesimal displacements and strains). If this assumption :S:
! is made, the strain rates are related to the velocity ‘i
gradients by : fQ:?

E c 1(3u_ /3 au_/ax ) (19) —
X € 2 u X u X S
iy 2"y T i
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This simplification also means that the reference coordinate
system and the material coordinate system are coincidental
throughout the deformation. In the computer code described,
the option of finite or infihitesimal strain theory is left to
the user. The use finite strains slows convergence
considerably for problems where the deformations are small.
As the strains grow, however, the solutions assuming
infinitesimal theory diverge from the finite strain results.
Eventually infinitesimal solutions will fail to converge
regardless of how small the load increments are taken.

By either employing the Principle of Virtual Work for
increments of displacement or by performing the standard
Galerkin technique on the governing equations, (17) and (18),

the finite element equations governing the nodal velocities,

U, can be written in terms of the loading rate vector, R, in

the form

KU) . g- (20)

~ e ~

1 70
[
(=]

The standard finite element assumptions made are given by




K(U) =

o

D( dv

| 3 =

)

o

L J
elements element volume

where N are the shape functions. The set of rate
equations (20) will be integrated one load increment (AR)

at a given time to determine the corresponding new

displacement increment, AU. The Newton-Raphson or tangent

stiffness solution procedure is employed. At load increment

L + 1, the initial solution AU% is found from

~lat

i
K(U . AU = AR 22
~(~L) ~L+1 ~L+1 (22)

The '"'new'" displacement is then used in the stiffness matrix,

m i
K(UL + i£1 AU 1). and a new correction is obtained from
= +
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i m+1
? au . AU AR -
Y e DRI TR SR
X m i
. Uu + L Aau (23)

L i=1 L+1

oK) au - EY
u o~~~ T L

where the integral is approximated using Simpson's rule. The

procedure is repeated until two convergence criteria are met:

2 2
i+l
- F /| AR <C
; ~L+1 ~L+1] - 1
; and (24)
2 2
i+l S
F <C o~
~L+1 ~L+1] - 2 e

where R 1 is the total load at step L + 1.

~L+

N In this study, 20-node quadratic isoparametric elements
were employed exclusively. All integration was carried out
utilizing 3 x 3 x 3 Gauss-Legendre quadrature formulae.
Strains were calculated at the Gauss integration points in
each element from the strain-displacement relations of (19).

Stresses were cumulatively calculated at the Gauss points from

the stress-strain relations.
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Directly calculating strains and stresses from the finite
element relations (21) at points on element boundaries
inherently yields poor results. This is especially true when

CO

shape functions are employed. A superior approach is to
calculate the stresses and strains at the Legendre quadrature
points and to extrapolate or smooth them to the boundaries.
This approach has been shown to yield very accurate results
for a wide variety of geometric mappings. In this study ;he
smoothing technique as developed in [6] is employed for all
stress and strain evaluations.

For elastic-plastic studies, the authors prefer to model
the crack front region with a convergent mesh of conventional
elements rather than to employ a '"'singular'" element.
Experience with both elastic and elastic-plastic studies [3,7]
demonstrates this approach to be accurate (although, for
elastic problems, more costly). Since the nature of the
singularity is unknown in the elastic-plastic problem, it is
presumptuous to employ a singular element and may lead to

erroneous results.
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PROBLEM DESCRIPTION

3

&
1:2~':I§.
Consider a panel of overaged 7075 (T7651) aluminum with a §¢Q

' ‘_\'

central through the thickness crack. A typical panel is shown tﬂ§
in Figure 4. The panel used in this study had a width of ‘é;&
&4

. 8.89cm and a crack length to width ratio of .0.5. The specimen

Lttt e
RN
e R
NSRS g
KN oo . M

thickness was 0.984mm and the specimen length was 17.78cm.

The uniaxial stress-strain curve for the material is shown in

Figure 5. The metallurgical aspects of this material and its

mead

- ductility are discussed in a subsequent section. ;ﬁﬁj
& Since the panel was loaded normal to the crack only,

symmetry allowed the modeling of one octant. The finite

element grid used in this study is shown in Figures 6a, 6b and Sy
6c. The smallest elements near the crack front hadAplaner E»J
dimensions of a/20 (where a is the half length of the crack). .
The convergence of this grid is discussed in (3,7]. 534

The grid shown consists of 96 20-node isoparametric -F;
elements with 624 total nodes. The total grid has 1872 :
degrees of frecedom. The system was solved by the frontai
method. The total storage required for the entire program was F;é

2.2 Megabytes (for double precision computations). Total

runtime for the problem discussed was 48CPU Hours on a VAX };i
11/780. B
St
'
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Typical Center Cracked Panel.
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Finite Element Grid - Blowup Of Region A,

Figure 6b
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AN EXPERIMENTAL PROCEDURE ;,
| .
LY -
N ::- :;
: The ease and accuracy of measurement of the crack tip ;ﬁj
> . vt
. plastic zone shape will be high if the plastic zone is very iy %
! large. This would require a material in a very ductile Eﬁ;
) condition. However, such high ductility would create a large
curvature in the crack front during fatigue precracking and
I difficulties in obtaining convergence in finite element P_

analysis. Hence, an alloy in a modérately ductile condition

was found to be desirable. These conditions were obtained in
. 7075 aluminum alloy by overaging from the T651 condition for
3 72 Qours at 178°C (352°F). In this T7651 condition the alloy

had a yield strength of 307MPa and ultimate tensile strength

‘ of 407MPa. Ev~
- <.
? The specimen geometry used for this study was the {L
. center-cracked type with width, w = 89mm and crack length, e

2a = 44.5mm. Fatigue cracks were initiated and extended from ;g;

machined notches to obtain sharp crack tips. The fatigue

AL U R
1

precracking was performed at a load at least 50% lower than 5¢i‘

the load applied for plastic zone formation. After the {;
lf fatigue crack was grown, the specimen was loaded_to'a desired ;?ﬁ
; load value to produce plastic zones at crack tips. The
! maximum load was limited by the load needed for crack growth .f;
E initiation, as the experimental results were to be compared 3;
i with the results of finite element analysis without crack iiﬁ‘
! ' A
L =
2 =
| |

............
-----------------------

....................................
...............

----------
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extension. Attempts were made to obtain as large a plastic
zone as possible without crack growth; hence, the selected
f load was very close to that needed for stable crack growth
- initiation. Although initiation of stable crack growth is
generally accompanied by a sudden drop in the load, in ductile
materials, this drop is not easily detectable. Hence, to
assure that no crack growth took place during loading, the
! specimen was fatigue cracked again after plastic zone size
' measurement to exﬁend the crack approximately 2.5 to Smm. The
L specimen was then loaded to fracture. If crack growth
occurred during initial loading for formation of the plastic
. zone, the crack growth region would be marked by a dull
appearance, distinguishing it from the fatigue crack growth
region on either side. The results from such specimens were
rejected.

The plastic zone size was determined by measuring the
permanent reduction in thickness after the specimen was
initially loaded and unloaded. The contours of the plastic

zones were measured using a surface profile measuring device.

The sensor of the device consisted of a pointer with a small
tip radius attached to one end of a thin hardened titanium

; alloy sheet that was Slmm long, 19mm wide and 1.3mm thick.

[

= The other end of the sheet was rigidly mounted by sandwiching
between two aluminum pieces. Two strain gauges of resistance

120o0hms were mounted on each face of the titanium alloy
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sheet. These strain gauges formed four arms of a Wheatstone
bridge circuit. The circuit was similar to those used in load
cells, extensometers and clip gauges. The output from the
circuit was proportional to the movement of the pointer. The
signal was amplified using a D.C. conditioner. The use of the
thin titanium alloy sheet reduced the pressure on the specimen
by the pointer, and scratching of the surface was minimized.

The specimen was mounted horizontally on a table with two

‘micrometer screw feeds at right angles to each other. The

specimen was mounted in such a way that the direction of crack
(x-direction) was parallel to the direction of traverse of one
micrometer screw. When the sensor was mounted the pointer was
pressing against the specimen vertically. The specimen was
moved underneath the sensor using the micrometer screw-feeds.
The output from the sensor was used to drive the x-axis of an
x-y recorder. The y-direction displacement of the table was
measured using an extensometer attached to the system, and the
output from the extensometer was used to drive the y-axis of
the x-y recorder. Several traverses in the y-direction were
made for each face of the specimen at regular intervals of
distance Erqm the crack tip in the x-direction. The curves
obtained from these traverses were used to establish points
around the crack tip corresponding to a given thickness
reduction. From these, contour lines for different
thicknesses were established. This process was repeated for

all the four faces of the specimen.
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EXPERIMENTAL RESULTS

The contour lines delineate the size and shape of the
plastic zone. The thickness of the specimen falls between
those required for plane stress and plane strain conditions.
The plastic zones obtained had a shape representative of this
thickness range.

A set of contour lines obtained from one face of the
specimen are shown in Fig. 7. The scatter in the data for the
outer contour lines is higher than the inner ones. This is
because the rate of thickness variation decreases with
increasing distance from the cracked tip, as can be seen from
the differences in the spacings between adjacent contour
lines. Although the resolution of the sensor is very high and
is limited only by the extent of the amplification of the
signal, errors can be introduced due to any nonplanarity of
the initial specimen surface and slight variations in the
pressure applied on the micrometer screws while advancing
manually. The planarity of the surface was checked initially
before deforming the specimen. The variations in pressure can
cause an error of approximately 0.0025mm. The depth of
0.0051mm and 0.0102mm represented by the outer contour lines
are very sensitive to these variations. The scatter in the
data, also is produced by the nonhomogeneity of the material,
caused by coring and inclusions during casting and orientation

effects during subsequent mechanical processing.
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[t is also seen that the plastic zone is not exactly

symmetrical to the initial notch direction, which also can be
attributed to inhomogeneity. Plastic deformation occurs more
extensively in the softer regioﬂs. Material inhomogeneity
also may cause change in the orientation of the fatigue crack,
which tilts the zone ahead of it. Nonsymmetry can also be
produced by misalignment of the specimen and the testing
machine, but the misalignment in the set up used was
negligible.

In the finite element analysis inhomogeneity is not taken
into consideration and hence, the zone is assumed to be
symmetrical. A éomparison with the finite element results can
be made by averaging the distance of each set of contour lines
from the iniéial notch direction. Such contour lines
determined from the four faces are shown in Figs. 8-11. The
zone sizes are slightly different for the four faces. This
also results from the uneven crack growth during fatigue’
cracking due to inhomogeneity. Since the excess deformation
in one region is compensated by the lack of it in another,

averaging the results minimizes the error involved.
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E i COMPARISON EXPERIMENTAL AND FINITE ELEMENT RESULTS :ig
V..
o e
T The finite element analysis discussed previously was }i<
1:: f.;J:.
A performed and the residual deformation after unloading the Y
3 eIy
specimen was calculated. These results were plotted as !3_

contraction contours and are shown in Fig. 12. The average if
results (the average of all four sides as previously ;{:
discussed) are also plotted from the experiment. The results El,

f from the Finite element analysis are in good agreement with -
those obtained from the experiment. f
" The finite element predicts slightly more plasticity than !;;
- the experiment predicts. This is expected since the finite : ;;3
element formulation assumes all nonlinearity is due to plastic iii
(or permanent) deformation. In real materials, however, there i~¢

is some recoverable nonlinear deformation (i.e., nonlinear ) 5

elastic deformation). The averaging, material inhomogeneity )
and error in the two methods more than account for the e

ﬁ; deviations (less than 4%, maximum).
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observed are less than can be accounted for due to inherent
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e CONCLUDING REMARKS
E
Comparison was made between the experimental and finite fﬁiﬁ
y \-'.‘-
- element surface contractions for a center-cracked panel. The '“}'
F results compare favorably indicating the accuracy and ?f.'_-
L realistic modeling of this finite element formulation and Ef?
o modeling. The deviations between the results which were o
k.

error in the measurements. In fact, the results are more
accurate than one would expect. ;?h
It is important to highlight several factors when
discussing three dimensional finite element analyses in
general, and in particular for nonlinear problems. The
results are highly dependent on the grid characteristics and

on the convergence algorithm'employed. Additional degrees of

freedom do not guarantee a more accurate solution (1,2,3]. ;5;
When employing three dimensional finite element models,
convergence studies alone are not sufficient. Comparison
between predictions and true material behavior is essential.
With regard to fracture problems, it is essential to compare *fé
predictions from analysis with local parameters as erroneous

local models can be forced to produce results which agree

0 o LIRS

globally (i.e., on remote quantities, e.g., nonlinear X
. ;:\';.
compliance). NN
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The unique aspect of the study presented in this paper is ;5\

the direct comparison with experimentally measured local g&:
quantities demonstrates the accuracy of the modeling EEE
employed. This approach can now confidently be applied to :ii-
Eracture problems for the testing of fracture criteria and the 5{?
prediction of crack growth and instability. Without such a E -
demonstration, numerical solutions and verification of failure :Qi
criteria are always suspect. Due to the complicated nature of F';
the problem, each component of the analysis must be verified ;
independently to guarantee accurate solutions and meaningful ;};

predictions. This component is lacking in three-dimensional

studies reported to date.
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ABSTRACT

The modeling of fracture specimens and the application to
growth problems is discussed for elasto-plastic materials.
Emphasis is placed on modeling three-dimensional effects and
slow crack growth. Extensions to creep modeling is discussed
through reference. Directions of on-going and needed future
research is included.

The modeling of fracture phenomena in materials which
exhibit nonlinearities has been a topic of interest for many
years. As early as the 1940's, researchers have recognized
that real materials used in engineering pracfice exhibit both
material and geometric nonlinearities. Since that time, much
effort has been made to address and quantify tﬁg effect of .
nonlinearities on fracture and ultimate failure of materials.
The purpose of this paper is to summarize many aspects of the
modeling of nonlinear fracture mechanics. Specificaily, the
paper will address the elasto-plastic and elasto-visco-plastic
behavior of metallic materials and the applicability of
modeling phenomena to fracture problems in these regimes. The
emphasis will be on numerical modeling schemes which can be
experimentally verified and computationally implemented.
Failure criterion and fracture modeling is the topic of a
separate study.

The problem of modeling fracture problems in nonlinear

materials can be subdivided into three major numerical (or
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theoretical) problems: the constitutive modeling of the funda-
mental nonlinearities (both geometrical and material), the
prediction of stable crack growth and fracture instability, and
the numerical modeling of stable crack growth. This paper will
address the computational approach to fracture modeling and the
three-dimensional nature of ductile crack specimens.

Discussion will also be presented on the modeling of stable
crack growth from a computational viewpoint. Failure and
fracture prediction can only be intelligently addressed through
studies employing accurate modeling of the nonlinear problem
and are in the realm of ongoing and incomplete research. The
methodology for time dependent visco-plastic behavior will be
discussed as extensions and modifications of these problems.

COMPUTATIDNAL APPROACH TO
ELASTIC-PLASTIC FRACTURE PROBLEMS

Many authors have demonstrated the three-dimensional
nature of ductile fracture phenomena (for a review of the
literature, see {1]). To address the accuracy of the Finite
Element Method and standard plasticity analyses for analyzing
fracture specimens it is necessary to examine the local
deformation near the crack. Several authors have demonstrated
that quantitative agreement with gross specimen quantities
such as compliance, global energy (including '"Energy
[ntegrals'"), gauge displacements, etc. do not guarantee

accurate local predictions (see, for example, [2,3,4]). To
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address this problem, a local deformation prediction is
compared with experiment.

A panel of overaged 7075 (T7651) aluminum was tested
experimentally. The specimen was a center-cracked panel with
width 8.89cm and crack length to width ratio of 0.5. The
specimen was loaded to the highest applied load precluding
crack growth and subsequently unloaded. The residual surface
deformations were measured using a special LVDT probe and
measuring technique described in [5].

The same panel was analyzed using the Finite Element
Method. J-flow theory plasticity was employed with a
multilinéar uniaxial hardening curve. A mixed kinematic and
isotropic hardening law with balanced weights waé employed
together w}th an adaptive load incrementation scheme [6].
Geometric nonlinearity was modeled using the Updated-Lagrangian
approach [6,1]. The converged idealization and complete -
formulation of fhe problem can be found in [1]. The panel was
loaded incrementally and unloaded to zero applied load. As
expected, much residual stress and deformation remained. The
residual displacements on the specimen surface were compared
with experiment. The comparative results are 'summarized in
Figure 1. The solid 1ines are the numerically predicted
surface constrictions and the discrete points are from the
experimental data.

The average of the four sides was compared as the local

inhomogeneity and lack of symmetry is virtually eliminated in
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the experimental average. The results demonstrate the
accuracy of the finite element modeling and solution procedure
being employed. The experimental data and predicted contours
differ by less than 3%. This is more accurate than was
expected comparing with claims made for the finite element
solution of crack problems in two dimensions.

The comparison presented above and described fully in [5]
demonstrates the accuracy of the current numerical approach
and modeling. The results predicted subsequently would model
fairly well the true deformation in engineering fracture
specimens. The remainder of the problems to be discussed will
qualitatively examine some of the more important aspects of
fracture specimens and modeliné.

To investigate the effect of material hardening model, a
center-cracked panel 8.89cm wide was studied. The crack
length to width ratio is 0.5 and the specimen length to width
ratio is 2.0. The idealization is the same as discussed
previously [1]. The loading is normal to the crack direction
and reaches a maximum load equal to 1/3 for the material yield
stress. The material is modeled as either exhibiting

kinematic hardening behavior, isotropic hardening behavior or

a mixed hardening behavior (as described previously). Since
the global applied loading is monotonic, the three hardening

models would predict identical response if the local
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deformation were truly proportional in nature (assuming no P
crack growth).
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Figures 2, 3 and 4 show the yield zones on the surface of
the specimen at maximum load for each of the hardening models.
The local response is definitely nonproportional. The
isotropic model predicts more yielding on the crack extent line
than either of the other two models. This would suggest a more
ductile response ahead of the crack (implying a greater
tendency toward stable crack growth prior to final failure).
The results with mixed hardening have proven to be the closest
to what is observed experimentally. The others, therefore,
should be viewed with that fact in mind.

The largest affect of hardening model is the yield
characteristics on the crack extent line. The maximum yield

radius and the "skewing'" of the yield zones is fairly

independent of the hardening model. It is important to
emphasize, however, that the differences between the

predictions are significant and the local response is higﬁly 'j;
nonproportional. N

Figures S, 6 and 7 show the yield zones on the midplane of iy

the specimen. These zones demonstrate the same hardening “:f
effects as do the surface zones. The greatest influence of ff?
hardening model is seen on the line of crack extent. On the fii
midplane of the specimen, a plane-strain type of zone would be é;%
expected (i.e., similar to zones predicted with a 2-dimensional Qﬁi
plane-strain analysis). The mixed hardening model demonstrates Eé?

"
§
AL

A

the most realistic results (which is consistent with the

surface observations).




The results demonstrate that the local response near a
crack is not of the proportional type. This has significant
implications with respect to valid failure criteria and
analysis models. The results presented also demonstrate that a
mixed hardening rule is the most realistic for modeling the
aluminum alloys investigated so far and is probably best for
most engineering metals. A complete discussion of the
hardening modeling effects and the implications of these
findings can be found in [7].

To study thickness effects, the specimen thickness is
varied and the different zone sizes and shapes are reported
(the same center-cracked panel is used with mixed hardening
assumptions). Figures 8a, 8b, 8c and 8d show the surface yield
zones as a function of thickness. The thickness is varied from
1.5 times the ASTM plane strain requirement to a very thin
panel dimension (total thickness of about 3mm). Even for the
thinnes£ specimens, the classical "plane stress' zones are not
recovered demonstrating that the assumptions of 2-D plane
stress are not valid for this specimen. Also, even for very
thick specimens, the predicted zone does not conform to
classical plane strain zones (the surface deformation will
never conform to 2-D assumptions since not only is the surface
normal stress zero but the strains required to produce plastic
incompressibility require a nonuniform normal strain through
the thickness which is incompatible with 2-D plane strain). It

is important to remember that a state of stress with zero
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normal and antiplane shear does not need to reduce to 2-D

plane stress.

-
Figures 9a, 9b, 9c and 9d show the midplane zones for the gga
four thicknesses. As the thickness increases, it is obvious é%?
that the zones approach plane strain zones (which they E&?
should). Even at the largest thickness, however, tgpy show
some skewing due to the finite geometry. From these results, E;;
the ASTM criterion may not be good enough for ductile ﬁ:
materials. i
The yield radii and extent of yielding ahead of the crack isé
tip are summarized in the tables. It is important to note ﬁ%;
that the yield radius changes by about 10% with thickness, E;
however, the yielding ahead of the tip changes drastically E?~
and, thus, the plastic area changes. Since more energy is ;ft
being dissipated with larger areas, the ductility and fracture X
properties are obviodsly dependent. ‘ iEs
This study demonstrates the thickness effects on local Sfi
yield characteristics and also mandates 3-D analysis for @ﬁg
accurate quantitative predictions. A complete discussion on i&;
the effects of specimen thickness can be found in [6]. 7?
MODELING STABLE CRACK GROWTH
The modeling of stable crack growth is important for the ié{
prediction of ductile fracture phenomena. The processes of Eiz
r

stable crack growth and plasticity are almost always present

in application and, indeed, are

r
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Table la - Yield radii as a function of s
thickness for surface yield zones E,
&
o
Thickness Tmax/a To/a S%E
e
E
T = 2.54cm 0.307 0.045 PORS
T = 1.27cm 0.327 0.075 e
T = 6.35mm 0.331 0.205 A
T = 3.175mm 0.343 0.296 S
Fpax - maximum yield radius E,.
ro ~— yield radius along crack line Y
Table 1b - Yield radii as a function of N
- thickness for midplane yield zones '
E:
k-:- Thickness rmax/a ro/a
T - 2.54cm 0.260 0.039 (-
T = 1.27cm 0.280 0.071 AR
T = 6.35mm 0.283 0.193 N
T = 3.175mm 0.299 0.288 ﬁg;
extremely interrelated. The modeling of this process, !;é
however, must be numerically accurate independent of any
particular failure criterion.
Ductile fracture is inherently a three-dimensional i;;
problem as has been demonstrated both in this paper and
elsewhere ([1] provides a review of the topic). No studies to
date, however, have successfully modeled a slow growth process !;f
in three-dimensions. A major reason for this is the extreme
number of degrees of freedom needed to model such a process if
standard crack growth (fixed grid) modeling is employed. A !;-
f
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better approach is to employ the ""Mesh Adaptive'" technique
introduced in [8].

The standard method used to simulate crack growth consists of
employing a grid with extremely small elements along the line of
crack extent. Nodal forces (or displacements through a spring
release method [9]) are relaxed at certain load levels to create new
free surface. If a criterion independent study is done, this method
will yield very good agreement with experiment (see, for example,
[10], for a typical example). Convergence studies have
demonstrated, however, that a typical Mode I center-cracked panel
which exhibits 15% total crack growth can require upwards of 1500
DOF to achieve good accuracy. The extension of this method to
three-dimensions, therefore, is not realistic.

In the '""Mesh Adaptive' approach, a standard stress analysis is
performed until the onset of stable growth is predicted (either
directly from experiment 5r from a theory). The load is then
incremented a small amount (the amount is influenced only by
numerical convergence, however, an amount correspondent to 2 percent
crack growth or less is accurate for most aluminum alloys) and the
amount of crack growth is predicted (or calculated from experiment).
The near crack mesh is convected to the new location of the crack
tip. The stress along the new free surface is relaxed to zero and
the new resultant plastic state is calculated in the entire
specimen. The new stress state is then extrapolated to the new
geometry and the process is repeated for each increment of crack

growth.
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Comparison with this experiment has demonstrated this
approach to yield accurate predictions for several 2024
aluminum specimens. Convergence studies on a previously
studied problem [8] have demonstrated a DOF reduction of about
200% and a computation time reduction of about 100%. For
three-dimensional problems, the '""Mesh Adaptive'" method should
yield even greater improvements. Computation time, however,

will still be extreme if accurate predictions are desired.

MODELING VISCO-PLASTIC BEHAVIOR

To model visco-plastic or creep behavior the rate
equations of stress and strain are formulated to satisfy
equilibrium and geometric compatibility. The formulation (an
outline of which can be found in {11] in addition to many
other standard texts) then requires only the constitutive
behavior and flow rule. From the standpoint of fracture
mechanics, the material modeling is the only unsolved
problem. The fracture modeling is done exactly as in
elaStic—plastic problems. Fracture prediction, however, is
still an open question.

The constitutive modeling of visco-plastic behavior is
still an open issue. Generally the models can be divided into
two categories: those that depend on internal variables and
those which utilize only stress and strain measures for their

flow rules. A good (although somewhat biased review can be
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found in {11]). From a computational standpoint, a

visco-plastic flow rule should be only implicitly dependent on

el R S

time and contain parameters which are true material
constants. The last requirement is the most difficult to
achieve.

An additional problem involved is the material
variability or '"'scatter" in the visco-plastic regime. Many of
the materials involved show uniaxial scatter of 100% or
greater in their primary creep behavior [12]. A theory,
however, will not predict this scatter if it is deter-
ministic. Two approaches are open: choose a statistical
theory or attempt to qualitatively model applications by
quantification of a single material samble. If the latter
approach is chosen, consistent results can be obtained. This
approach is the one currently employed by most authors and
reasonable results are obtained (for a review, see [13]).

Studies are underway to address these problems, however,

visco-plastic modeling of engineering fracture problems is

‘“".‘. W e

still an unsolved and open question. The problem, however, is
one of constitutive modeling. Fracture modeling is identical

to that for elasto-plastic problems.
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SUMMARY

The emphasis of this paper has been on the three-dimen-
sional nature of ductile fracture specimens, a short review of
the state-of-the-art modeling and an emphasis on the
importance of careful modeling and the importance of con-
vergence studies for nonlinear problems. The three-dimension-
al nature of fracture must be addressed before meaningful
prediction can be made on the failure of real engineering
materials in application. Two-dimensional studies are a
necessary first step in the research process, however, great
caution needs to be exercised in the interpretation of re-
sults as the criteria which appear to prediét reasonable
answers to a few, idealized example problems may not have any

application to real situations (e.g., [14]).
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Fig. 8a - Surface yield zones for specimen with I:E
2T = 2.54cnm
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Fig. 8b - Surface yield zones for specimen with F—
2T = 1.27cm
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Fig. 8c - Surface yield zones for specimen with
2T = 6.35mm

r/a = .296

Fig. 8d - Surface yield zones for specimen with
2T = 3.175mm
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APPENDIX E:
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Creep Testing and Constitutive Modeling %€~ )
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By: E. Thomas Moyer, Jr. and P. K. Poulose.
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The first step in characterizing creep crack growth is the
establishment of valid constitutive parameters for modeling the
deformation process. To this end, several uniaxial tests were
conducted. These results are then processed and correlated

with postulated constitutive models.

Testing Apparatus

An "ATS" Lever Arm Tester Series 2410 was used for the
creep testing. The test stand is designed to apply static
stress to a test specimen for an extended period of time at a
constant elevated temperature. The apparatus consists of a
balance beam that connécts the test specimen to a weight pan.
Ratios of 3 to 1 and 20 to 1 are designated between the weight
pan and the specimen. The lower ratio is used to provide
optimum accuracy at lower loads. The weight pan is part of the
overall weights and is suspended with a chain to prevent
bending movements to the load trains.

On the specimen side of the machine, a balance beam
leveling motor compensates for the elongation of the test
specimen. If this is not available, the balance beam may
become unlevel, thus-changing the calibration of the weight
system. This is important in maintaining the load accuracy
within the ASTM requirements.

A tabular furnace with an electrical-resistance winding
heats the test specimen through radiation in an air

atmosphere. The furnace has three heating zones. The tube is
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- located in a vertical position, with pull rods connected to the

X

]

mL.

specimen. The temperature is controlled by means of a

Ay
5

thermocouple, located in the vicinity of the test specimen,

>

within t1°C.
When creep data are required, the specimen strain must be

measured as a function of time. This is difficult because use

» ey IEENES S Y Y F W F f mmumme + >
-

of strain-measuring transducers is not practical at the test
' temperature. A mechanical linkage must be attached to the
| specimen to transmit the strain to the strain-measuring
equipment outside the high-temperature environment. A linear
i variable differential transformer was used to measure the
strain. It consists of a mdvable metal core that changes the
electrical characteristics with small motion associated with
l strain measurements. The linkage is made of an alloy that can .

N withstand the test temperature encountered.

.« .
]

i Specimen Preparation

The test specimens were cut from a 1/2" thick sheet of
Alloy 718 -with composition listed in Table 1. The tensile axis

of the specimen were perpendicular to the rolling direction.

CARL

The specimens were heat treated and machined to the ASTM

[N

- specifications. The heat treatment procedure is shown in Table

2. The specimens were then surface treated in order to

YER

eliminate any scratches and other stress raisers that may have

- remained from the machining.
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Specimen Loading

Attention was paid to avoid straining the specimens when
mounting them in the adapters and load train. With the
specimen in place, the load train was examined carefully for
any misalignment that may have caused bending of the specimen
under load.

The upper load train was suspended from the lever arm, and
the compensating weight adjusted so that the lever arm
balanced. Strain-measuring clamps and the extensometer were
attached ;o the specimen, and the load train was inserted into
the furnace with the specimen centered. The specimen was
stabilized at the temperature before loading at least for one
hour. .

Loading the weight pan was done smoothly an& without
excessive shock. This was done by lowering the supporting jack
under the load pan. In the case of step loading, the weight
was placed on the weight pan in measured increments, and the

strain corresponding to each step of loading was recorded.

Temperature Control

The specimen should not be overheated while brought to
temperature. To do this, the specimen was brought to 10°C
below the desired temperature in about 1-1/2 hours. Then, over

a longer period, the specimen was brought to the desired

temperature.
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Table 1. Chemical Composition of Alloy 718.

Composition, Weight Percent f¢;
0.04 C Bal. Fe 1.00 Ti
0.19 Mn 51.14 Ni 0.52 Al "
0.05 Si 17.96 Cr 0.43 Co 5'
0.005 P 3.12 Mo 0.02 Cu
0.005 S 5.19 Cb and Ta 0.003 B E»
=
Table 2. Heat Treatment of Alloy 718. g;;,
Fi
Anneal at 955°C for 1 hour - air cool §§£
Age at 720°C for 8 hours, furnace cool to 620°C K:ﬁ
Hold at 620°C for total aging time of 18 hours
Results {i
Two series of uniaxial tests were conducted: one at 550°C ;
and one at 650°C. The results are summarized in Tables 3 and 3*?
4. The strain vs time curves are shown in Figures 1-9. o
Evident from these tests is that the specimen exhibits moderate
primary creep at 550°C and virtually none at 650°C. This is :?§
evident at all the load levels tested. For the 550°C data, at ;ﬁ;
time explicit model was fit to the data. The results are given Eéz
in Table 5. These results can either be used directly as a Efb

.................................. .

St e R A T MR e e e e e T et e LT T T e .
PRSP R, PIVUAP SPSTSRPYNPAT G 4N .0 v’-'Aig'."gl;_'.g_.';‘A_‘-*’z;‘&_\_s.‘&\"-_’,s.'.\.‘;. AR TR T




CUINL oM e i it a0 A AR e h

AP

<
NN

..,..
AL
LA

l‘,""\

"

-

N

e "¢ 2
y

.
o

constitutive law, or, can be correlated with a time-implicit
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differential model allowing for more general hardening. Many

.
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candidate models exist and are currently being investigated.
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The 650°C data exhibits virtually no primary creep.

Sy

Unfortunately (from a modeling standpoint), much tertiary
behavior is evident prior to failure. Since tertiary creep
inQolves many deformation and failure modes simultaneously,
modeling is difficult. The approach to be used in fracture
studies is to assume tertiary behavior does not occur and that
the fracture mechanics models the damage which is not accounted
for by the hardening laws of primary and secondary creep.
Fracture tests are currently underway. Compact tension
specimens will be loaded at constant load and temperature.
Crack growth, crack opening, gauge displacement, mouth
displacement, etc., will be measured. Finite element studies
are also underway to model the growth. The results will be

presented when they are completed.
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Yield Strength = 144.08 KSI

Table 3. Tensile Properties of Alloy 718 at 550°C.

Ultimate Strength = 176.78 KSI
Elongation = 20.72%
Specimen
Number Stress (KSI) Time to Failure
5 152.9 210 hours
4 153.4 87 hours
9 155.1 189 hours
6 155.2 212 hours
7 157.2 190 hours

Yield Strength = 133.89 KSI

Table 4. Tensile Properties of Alloy 718 at 650°C.

Ultimate Strength = 163.67 KSI
Elongation = 25.7%
Specimen
Number Stress (KSI) Time to Failure
13 143.2 90 minutes
14 132.9 240 minutes
15 110.1 41 hours, 30 minutes
16 99.9 227 hours, 30 minutes
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Specimen

Number

€0

Table 5.

550°C Data Fit to Model.

€A

-rt

Max

Error

0.0252

0.0336

0.0264

0.0398

0.0403

2.265 X

2.389 X

2.082 X

4.488 X

3.304 X

10

10

-6

-6

4.758 X 10°°

5.442 X 10

4,783 X 10

5.162 X 10

6.199 X 10

1.612 X 10

2.353 X 10

1.806 X 10

2.983 X 10

3.339 X 10

-3

-3

-3

-3

-3

.89%

.95%

.99%

.35%

.51%
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Finite Element Formulation for Creep Problems &

.

By: E. Thomas Moyer, Jr.
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This section outlines the formulation being employed in
y the creep-fracture studies. The total strain rate is
j decomposed into an elastic and visco-plastic portion in the
Ll
form (uniaxially).
3
‘\‘ [ ] [ [ ] .
pe € = € + € (1)
r e vp
where the subscript e will refer to elastic quantities and the
subscript vp will refer to plastic quantities. The total
stress rate is related to the elastic strain rate in the form
L ] L ]
: e =De (2)
- e
. All deformation is assumed to be elastic except when the
- flow function, F, first reaches the condition
- F(o, ¢ ) -F =0 (3)
4 . vp 0 -
- where Fg is the initial flow stress. The total uniaxial stress X
= can te written as S
o =0 + H' ¢ (4)
Yy vp : o
ff where Oy is the'uniaxial yield stress. The elastic (or g
- initial strain) is related to the zero time stress as
o € = € = g 5 ‘.":' [
= 0~ % & %) R
.':' \.::..:
.-4 :’.:-:
.{9 .
!‘:.- "..'I;
= S5
o e

>
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This relation also holds at other times relating the total

E ~
S
'l.-
N Oy

2
I

5
VA,

Al

stress to the elastic strain. Integrating the above, the

visco-plastic strain is given in the form

o
i

G'
".‘
=

. -rt
€ =€ t+ e (l-e ) (6)

2

€ = € + €_re (7)

[ J
where co, cA, r are material parameters.

For multi-dimensional problems, the visco-plastic strain

rate generalizes to the form

c L= Y <O(F)> 3 (8)

l
<
&

where vy is the fluidity parameter and ¢ is the yield

function. The total strain can be represented as

€ = € + € (9)
~ ~e ~VvVp

and the visco-plastic strain can be simplified to

[}
[}

Y <®> a (10) i

(11)
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For many practical applications, the choice of a flow function
in the form
o (F) (F F )N F)F (12)

Bl o 0
= 0 otherwise

is appropriate (especially for metallic materials).

The equations formulated above are solved incrementally
using an explicit time integrator. The increments of
visco-plastic strain are given by (at time tn)

n en
A ¢ = At ¢ (13)
~Vp n ~vp
The strain rates are incremented by the relation -
|

e n+l L n n

€ = € + H Ao (14)

~Vp ~Vp ~ ~

| where
n . n n n
Ho-f3c = H (o) (18)
3‘6‘2
n n n n
Ao =DAe =D(Ae -A4c¢€ ) (16)
~ ~ ~e ~ ~ ~Vp
The strain increments can be written as (in terms of the
incremental displacement additions)
n n n

A e =B Ad (17)
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yielding
n n n en
Ao =D[B Ad - ¢ At]

relation for the stress increment.

The B matrix relating the strain to the displacements can

be decomposed into a linear and nonlinear portion as

n n
B =B +B
~ ~0 ~NL

The special case of linear deformations renders B = 0.

~NL

(19)

The equilibrium conditions for a given time increment can

be written as

[
—
o
—
>
Q
[« %
<
+
>4
tm
=)
"
(=

n
where A £ are the incremental

previous time increment.

n n -1 n
Ad = [K_] AV
~ ..T ~
where
n
AV =

and the stiffness matrix is

......... .

“

PN

forces applied during the

The solution is

n T e n n
J.. [B] De AtdVa+ATf
v ~ ~ ~-vp ~

AR

SR o St .
N S e T T PO T A B PR
i o T A S e N T e e A A A A A At el A A

(20)

(21)

(22)

(23)

e




[ R
T &;
: 5 4:.;\.::.
2Ry Sl
. The stresses, displacements, strain increments and strains are ?‘f
~ then updated as RS
X g,
N ! ‘."_- :
N n+1 n n
. o =0 +A0c (24)
< n+1 n n
: d =d +Ad
- n n n -1 n
" Ae¢e =B Ad -D Ao (25)
n+1l n n
= € + A ¢ ( 26 )
K ~vp ~Vp ~Vp

For most problems of interest, large strains can occur. A

Total Lagrangian formulation is adopted here. The B matrix is

SR,

decomposed as

B-B +B 27
~ =0 " ~NL (27)

The stiffness matrix can then be written as

- K=K + K (28)
"‘: -~ ~ 0 ~ NL
d where the linear and nonlinear portions are given as ;?
T I
K =J B DB dV (29) A
~0 V~0~ ~0 e
T T T ,‘f
K =J (BDB +B DB + B DB)dV (30) W
~NL V ~0~ ~NL ~NL~ ~NL ~NL~ ~0 F§H
The displacement increments can then be written as I;ﬁ
n n -1 n i;ﬁ
Ad = [K.] Av (31) e
~ ~T ~ R
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n -1 n -1 n
Ad =K AV + K AV (32)
~ ~0 ~ ~NL ~
where
n n n n
AV =AV + AV + A f (33)
~ ~0 ~NL ~
n T n
AV =J B De AtdV (34)
~0 V ~0 ~ ~vp
n T e n
Av =f B D ¢ At 4V (35)
NL V NL VP n
The total stress increment becomes
n n en n
Ao =DB Ad - ¢ At) + DB aAd (36)
~ ~ ~0 ~ ~Vp ~ ~NL ~

In this formulation, the strain is decomposed into a
linear and nonlinear component. For the special case of plane

problems, the specific forms are

€ = 37
S N (37)
The B matrices are
N m
d N, 0
i
d X
i
B = 0 o N (38) oy
~0 i EA
dy Sl
a N a N o
i i it
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b The strain components can then be written as

B 7
a_u
—

»

formulation summarized above has been implemented in a

<
~

Ty

The next stage of the

2 3 u+ 93V
_ 9y J X
.. B 2 2
- (d u}y + 1 (9_Vv)
= Z TX 7 90X
& 2 2
€ = 1 (3 u) + 1 (8 V)
NL Z 9y Z dy
Jd u d u d Vv
| W 3w -G
The
computer code and rigorously tested.
research is centering on modeling slow crack growth and
i alternative constitutive formulations.
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To appear in the Commemorative Issue of the Journal of
Numerical Methods in Engineering in Memory of Bruce Irons, 1985.
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ABSTRACT

The governing finite element system for elastic-
plastic analysis of fracture specimens in three-dimen-
sions is formulated. The formulation accounts for mixed
material hardening, finite strains, finite rotations and
plastic incompressibility. The implementation of these
aspects into a computational formula is presented and
alternative formulations are compared. Small strain theory
is recovered as a special case to the present formulation.

Analysis is performed on a finite thickness center
cracked specimen. The grid characteristics required for
converged solutions are discussed. The effect of material
hardening model and specimen thickness are studied. The
local yield state is examined as a gauge of the local
deformation processes. The implications on the fracture
behavior of the specimen is discussed.

Local surface displacements are compared to experi-
mentally measured yield surfaces. The formulation is
shown to predict extremely accurate local deformation in
the neighborhool of the crack front. Contrary to the few
three-dimensional fracture studies carried out to date,
this analysis concentrates on the local deformation be-
havior which ultimately controls fracture. Accurate

resolution of this behavior is essential before meaningful

fracture criteria in three-dimensions can be developed.




INTRODUCTION

The field of fracture mechanics has develored,
primarily over the past 35 years, as an important and useful
tool for the design of engineering components and struc-
tures. Much of the success of fracture analysis is due to
the advancement of the finite element method as an accurate
approach to numerical stress analysis for problems which
involve geometric discontinuities and singularities.
Originally, fracture studies were aimed at predicting
brittle failure of materials. While a necessary first
step, this approach did not give meaningful results to many
problems of practical importance. Much of the later work
in fracture mechanics, therefore, is geared toward
addressing the problem of ductile fracture.

Ductile fracture problems involve much local nonlinear
deformation. Analytical approaches to the concerned
boundary value problem have proven largely futile. To
obtain analytical solutions, far too many unrealistic and
inappropriate assumptions are required. Numerical solutions
are, therefore, imperative. Much work has been done in the
area of elastic-plastic stress analysis of fracture speci-
mens. Very little, however, has been carried out in
three-dimensions. In application, most components are not
thick enough to be considered in plane strain. Indeed,
most true plane strain fractures are brittle in nature.

Plane stress analysis on fracture specimens is rarely




applicable. The assumption of plane stress violates the
compatibility equations which are essential to the formula-
tion of the full boundary value problem. While this is
unimportant far from the crack tip, elastic solutions
demonstrate the breakdown of the assumption near the crack
tip [1]. 1In plastic analysis, the assumption is further
compounded by the fact that four general deformation regions
can be identified near the crack front: a) the near tip,
elastic, plane strain region; b) a near tip region governed
by an asymptotic "plane stress like" region (which, in fact
shows contributions from both elastic plane strain, plastic
plane stress and possibly boundary influence); c) a transi-
tion region in which the deformation is nonlinear, not

dominated but influenced by the singular stress field (also

- . . . . ' '::: 3

- a fully three-dimensional region); d) the exterior region £g¢.
.i which is either plane stress dominated, plane strain ’ééf
Ei dominated or fully three-dimensional depending on specimen R
.~. 3 = .( =~
o geometry and thickness [2,3]. S
. : . i . i . N
iﬁ While two-dimensional elastic-plastic studies may ”

F: provide some insight into the qualitative aspects of -

r L
:1 ductile fracture, they cannot be expected to yield quanti- e
p* . -
. . . . N
b tatively useful results for problems which are not dominantly .

brittle. This is not to imply that two-dimensional studies g

';s-:_i

are not important. They must be done to provide qualita- S
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tive and preliminary information which would be far too 5&1

costly to obtain with three-dimensional analysis. For the E?H:
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(92]

quantitative prediction of ductile fracture phenomena, how-
ever, two-dimensional studies cannot be relied upon. The
success reported for problems with reasonable ductility in
the literature can more than be accounted for by the use of
global fracture criterion which are theoretically (as well
as computationally) unsound. This will be expounded upon
in a later section.

The work discussed in this paper has evolved over the
past three years in an effort to systematically, consistently
and accurately address the problem of ductile fracture. The
work is by no means complete. The full, incremental e1a§tic-
plastic finite element formulation is presented. Much debate
exists in the literature with regard to valid formulations
and yield criterion for ductile fracture specimens. Specific
choices were made in the formulation based on experience with
two-dimensional studies. It is believed that the current
approach will be adequate for most engineering metals at
Toom temperature.

Results are presented for three different aspects of
ductile fracture specimens. An important aspect of any
numerical study is the validation of the accuracy of the
numerical method being employed. With regard to finite
element modeling of ductile fracture, this is extremely
important (not only is it necessary to theoretically formu-
late a valid approach, it is critical to demonstrate the
accuracy of the discretization employed). Verification of

the finite element approach is demonstrated in this work.
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A comparison is made with experimentally measured local
deformations. This approach eliminates the problem of

criteria bias evident in most ductile fracture studies.

e,

Results are also presented demonstrating the effect of
hardening modeling and specimen thickness on local

plasticity characteristics.
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PLASTICITY FORMULATION

Several approaches to continuum plasticity have been
proposed over the past several decades. Most are based on
either stress or strain yield criterion and various
hardening assumptions. No clearly "BEST" approach has
emerged to date. For most engineering metals, however,
the J, flow theory of plasticity is widely accepted for
practical applications. This approach is reviewed and
employed in the current investigations [4].

The J2 flow thgory of plasticity assumes that the
material in question yield, or starts deforming plastically
when the "effective stress" (or von-Mises stress) reaches a
critical value (called the yield stress). Prior to the
onset of plasticity, the material is assumed to behave
linear elastically. Subsequently, the deviatoric stress
components are related to'the deviatoric strain rate through

the tensor relation

= R k

1+ g 3 v, % © “yd

=1 Si5 * 7 £ (9,) S5 o . o

% 0 AR

eij ) 1 + v @ (1) ﬁ;ﬁs

"E'_'Sij (otherwise) N

where éij are the deviatoric strain rates given by fi?

.« e 1. "'e‘i'

€ij = €ij * T €pp 8y (2) L
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Sij are the deviatoric stress components measured relative

to the current yield surface center given by

N

SRR

.

R
l.l'i"

S.. = S.. - a,. (4)

[
=}
[N
.
[
L]

- ‘v‘! I‘-

a;; are the coordinates in stress space of the current yield

surface center, o.. are the Cauchy stress components, ¢..

ij 1)
are the "true" strain components (discussed in a subsequent L
section), o, is the effective stress given by ?j
»:;-::
L . . o
and o, is the effective stress measured relative to the N
current yield surface center =

o'=/2-! S:. S.. . (6) é

e ij i3
The function f (0g) is derived from the uniaxial stress- ;;
strain curve and is consistent with the Associated Plas- ;?
ticity theory (a complete discussion is given in 7?
Reference [5]. Derivation of f (o) for a multilinear %?
representation of the stress-strain curve will be discussed :?

subsequently.
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For plastic strains which are incompressible, the
hydrostatic plastic strain rate is zero. The total hydro-
static strain rate, therefore, is related to the hydrostatic

stress rate by

LI L (7)
PP PP
Engineering materials exhibit different types of
uniaxial hardening behavior when subsequently unloaded

after being plastically deformed. Generally, the behavior

falls between two extremes called kinematic and isotropic

hardening. The uniaxial representation of these behaviors

for a bilinear material are shown in Figure 1. To allow

for various hardening behaviors in the multiaxial formula- §¢ﬁ
)
tion, the yield surface is permitted to move and expand ]
\':~ >

under certain constraints. These motions are controlled by

’
(]

B

LR
‘ll’

a single parameter, f , which can be varied from 0 to 1. A

value of zero represents isotropic behavior and a value of

1 represents kinematic behavior. The resulting yield sur-
faces in a three-dimensional principle stress space are
shown in Figure 2. The yield surface center moves at a

rate governed by
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Figure 1: Uniaxial Bilinear Representation of Kinematic
and Isotropic Hardening.




Lt S I AN AT B2 9t gl e sew B 2w 4 e dban 8o 2

VW e W (W Lo T e ey

Kinematic
Initial \\\ Hardening
Yield \

Surface
Stress State
Vector

Intermediate
. Hardening
o}
3
%9

Isotropic Hardening

Figure 2: Hardening Models in Principle Stress Space.

.'q‘.‘.’..' -

RN r 3 S e E P e e e e e et
"o o A . n - LI . ENE N R ., .. ‘.'~" ‘. N " - Y ot -
> W ) PPAA n e e e T e T T T st et e AR \ '\'.x‘\"\_\"

.ﬂ_.l'" ‘E .A\A" ‘A*.p. .1_]'_; "_g _'. :.'_.. '-."'.




\v

T

"R

Vel T T

ot
R

- e o - Gttty . MRS b v
LI A= e D R S bl Wt Ml N L e T AT e e L e U T T T URST UL, Chia i Cal

10

3 1 . ' .
7 BSk1 k1 Sij/(0¢) O = 9ygq
1] 6. >0

0 (otherwise)

0 <B<1
(8)
B = 0 »- Isotropic Hardening
B = 1 » Kinematic Hardening
The radius expands according to the relation
1
o, =20, + 2 B(o -0,) - (9)

y . b4 max y

To allow for finite strains and rotations, Updated
Lagrangian approach is adopted [6]. The coordinate system
is convected with the deformation. 1In this coordinate
system, the ''true strain'" rate is related to the deformation

rate (or velocity) through

95 = Cijk1 K1 (10)
In the absence of rotation the stress tensor is related to
the stréin rate tensor in the classical manner, i.e.,
k.. =1 RS (11)
ij z ij i

This stress measure is the Cauchy stress. Under finite

rotations, the stress tensor is not invariant. At zero
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A strain rate, the stress rate is given by where W are the

rotation rates
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3 r'.‘: v R

a

v

g.. = W. . - W . O ' 12
913 ip %j " "pj %ip (12)
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The total stress-deformation relation is, therefore,

NOCS

95 = Cijx1 k1 * Wik %5~ Wiy %k (13)
Equations (1) - (13) form a complete incremental
- representation of finite plastic deformation. It only

= remains, therefore, to quantify the uniaxial behavior

through the function f(oe). There are many functional

KRR
L St

. ways to represent uniaxial loading behavior. From a
computation standpoint, a multilinear representation is

easily implemented and, by allowing for enough segments,

CA N A

can be arbitrarily accurate. Consider the multilinear
representation of a true stress-true strain curve shown in

Figure 3. The functional relationship between the stress

and strain are given by

loj % %m

o
€=yt (02 - 01) + Ez (03 - 02) AERRY o (6 - om)

< <
Om o < O’m+1

The plastic strain rate, therefore, is given by
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S

. Using equation (1) and recognizing that for uniaxial de-
‘ formation, effective quantities are proportional to the

uniaxial components, the function f(oe) can be reduced to

f(o,) = o /B, (16)

The function is only linearly dependent on the current
i slope of-the uniaxial curve. By specifying enough segments,
virtually any hardening behavior can be accurately described.
The above formulation is chosen for implementation with
i the Finite Element Method to be described subsequently. It
is important to recognize that the formulation is
representative of a wide class of materials and can model

many different variations of material hardening. This

TaTs e T . s e 1 e 8

formulation has been employed with considerable success in
many investigation of material deformation and fracture

i mechanics. Several well known two-dimensional codes were
developed and have been widely employed for many years (see,

for example, [7] and [8]).
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FINITE ELEMENT FORMULATION

Equations (1), (8) and (9) provide the fundamental
relationships between stress and strain rates. The equilib-
rium conditions (governing equations) for a continuum body
in the absence of body forces and inertia effects can be

written as

O. . = 17
3013/3)(J 0 (17)

with the boundary conditions

°ijnj = Ti on ST

and (18)

where T. are the specified loading rates on the boundary
experiencing applied tractions (ST) and Gi are the velocities
specified on the remainder of the boundary (Su).

Equation (13) provides the fundamental relation between
the stress state and the deformation gradients. For many
problems in application the assumption of 'small strain"
introduces minimal error (mathematically, this means
assuming infinitesimal displacements and strains). If this
assumption is made, the strain rates are related to the

velocity gradients by

.........
............
.....
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i e
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) - éij = %(a&i/axj + aﬁj/axi) (19)

This simplification also means that the reference coordinate

system and the material coordinate system are coincidental
throughout the deformation. In the computer code described,
the option of finite or infinitesimal strain theory is left
to the user. The use finite strains slows convergence
considerably for problems where the deformations are small.
As the strains grow, however, the solutions assuming
infinitesimal theory diverge from the finite strain results.
Eventually infinitesimal solutions will fail to converge
regardless of how small the load increments are taken.

By either employing the Principle of Virtual Work for
increments of displacement or by performing the standard
Galerkin technique on the governing equations, (17) and (18),
the finite element equations governing the nodal velocities,
U, can be written in terms of the loading rate vector, R,

in the form

KW « 0-R=0 (20)

\ The standard finite element assumptions made are given by
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u=N.:1U0
EERN:

(21)

JOREDY [ o) B av

elements element volume

where N are the shape functions. The set of rate

equations (20) will be integrated one load increment

(AR) at a given time to determine the corresponding new
displacement increment, aU. The Newton-Raphson or tangent
stiffness solution procedure is employed. At load increment

L + 1, the initial solution Agi+1 is found from

i . ) o
KU » 8Up,q = 8Rp (22) N

The '"new'" displacement is then used in the stiffness matrix,

m

K(UL + E AUi+1), and a new correction is obtained from

i=1
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- i m+1
N K 19y + Z AU vl v ULy = 2Ry
e .
. i=1
“
.
- m
"i u, + aul ' (23)
L L+1 ]
i =1
o
- K(U) du = Fitl
i <~z < ~L+1
- U,
. where the integral is approximated using Simpson's rule. The
b procedure is repeated until two convergence criteria are met:
.
E. i.‘.l 2
| FL+l /'A8L+1 <G
. and (24)
o i+1|? 2
;'.;1; FLe1 /|‘3L+1 < G
)
where 8L+1 is the total load at step L + 1.
y In this study, 20-node quadratic isoparametric elements
‘ were employed exclusively. All integration was carried out
‘,:'.f utilizing 3 x 3 x 3 Gauss-Legendre quadrature formulae.
Strains were calculated at the Gauss integration points in
"r each element from the strain-displacement relations of (19).
Qi Stresses were cumulatively calculated at the Gauss points
-_..
Tl A N N e N e e e L e e
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e from the stress-strain relations.

Directly calculating strains and stresses from the finite
element relations (21) at points on element boundaries in-
herently yields poor results. This is especially true when
cO shape functions are employed. A superior approach is to
calculate the stresses and strains at the Legendre quadrature
points and to ektrapolate or smooth them to the boundaries.
This approach has been shown to yield very accurate results
for a wide variety of geometric mappings. In this study the
smoothing technique as developed in [9] is employed for all
stress and strain evaluations.

Currently, four methods of accounting for the crack tip
singularity are widely employed. Each of these methods is
based on an established technique in LEFM (Linear Elastic
Fracture Mechanics). The first method, the enriched element
approach (where the shape functions are modified with the
asymptotic crack solution vanishing at the nodes) has teen
emploved both for the multilinear stress-strain models and
for power law hardening models [10]. Enriched elements based
on the power law hardéning model assume that the enriched
element is tully yielded. This assumption is physically
unrealistic, especially behind the crack tip. The singular
solution employed for the power law hardening case also
assumes a circular yield zone which is far from realistic.
The solutions generated using enriched elements and a multi-

linear stress-strain assumption are reasonably accurate pro-

viding a judicious choice of enriched element size and sur-

PP S SR,
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rounding grid characteristics is made. The major drawback

to the use of enriched elements is the computation time
required to obtain convergence due to element incompatibility.
The second method, the most basic approach, uses a very fine
mesh near the crack tip and employs only conventional elements.
This method produces reasonable results far from the crack
region but questionable local results. Convergence is usually
rapid, therefore, gross specimen behavior can be obtained
quickly. With unrealistically fine grids, good local results
can be obtained (except in the elements bordering the crack
tip) but only at the expense of computer time [11]. The
third method is based on the fact that if isoparametric
elements are chosen with midside nodes, jucicious choice of
the placement of these nodes results in the inducement of a
/T term in the displacement shape functions (12, 13]. These
elements are essentially equivalent to enriching the shape
functions, however, element compatibility is preserved re-
sulting in faster convergence. The fourth technique of
modeling crack tip behavior is through the use of hybrid
elements where elements bordering a surface with traction
boundary conditions are forced to satisfy those conditions
exactly and the elements bordering a surface with displac-
ment boundary conditions are also forced exactly. The
element boundaries are then matched by using Lagrange multi-
pliers in the variational equations to ensure element
equilibrium and.continuity in an approximate sense. Little

work has been done on comparisons of hybrid methods to

Ve e e L U A .- LT L, PR . . B I . . .
------------- - ~ - R N N TR




R conventional methods in elastic-plastic crack problems, e

however, the technique was applied with auestionable success ':ﬁ
in [14]. The preferred method in the literature is still 0
to use a very fine mesh and standard elements. Complete aii

discussions of the above methods can be found in [15-17].
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FINITE ELEMENT DISCRETIZATIONS SR

%
v

A
o

<
oY,

In this paper, three basic aspects of the finite

Ay & Sy

element solution of ductile fracture problems are examined.

All three involve a rectangular panel with finite thickness

.E_'V'
e
M -

-

and a center crack through the thickness. Due to the

unknown singular nature near a crack front and the problem

of the intersection of a c¢rack front with a free surface,

only conventional (quadratic) 20-node isoparametric elements

are employed in this work. Studies on linear elastic o
through crack specimens has demonstrated the accuracy of e
this approach for predicting local deformation and stress

responses [18].

For all the problems discussed in this paper, the grid G
shown in Figures 4a, 4b and 4c is employed. This grid was £§§4
used to predict stress intensity factors for linear elastic ffgi
problems. The results (discussed in [18)]) demonstrate the EEE
accuracy is on the same scale with other approaches. The ;%3
advantage of this modeling is, since the singularity is not ;i;
accounted for directly, it should be directly employable in g;é
an elastic plastic study. To verify this, results are ;E;i
compared with experimental measurements in a subsequent tgz;
section. ???

The grid shown consists of 96 isoparametric elements &E;
with 624 total nodes (each element has 20 nndes). The total &E:
number of degrees of freedom is 1872. Runtimes for the !;;

.studies to be presented were rather lengthy on a VAX 11/780.
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{;- Typical runtimes for panels loaded to about 1/3 of the

material yield stress converged in approximately 48 CPU

o hours. This is fairly consistent with existing benchmarks
of computer codes which employ the frontal solution method
for solution of the stiffness equations. Obviously it is
preferable to run these types of problems on larger and

.j faster computers if they are available. It should be

'- appreciated, however, that even large problems can be run on

fairly small machines using the frontal approach.

;f The elastic results presented in [18] demonstrate the
convergence of the grid. It should be recognized at the

outset that the grid employed in this study is the minimum
required for convergence to the elastic solution. The next
section demonstrates its ability to model elastic-plastic

deformation realistically. While it is never possible for 15;
nonlinear problems without analytic solutions to establish
optimal grid requirements, it is believed that little N
reduction in the discretization could be made without i~§
seriously compromising the accuracy of the solution. .

Studies which employ fewer degrees of freedom must be

considered suspect.
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COMPARISON WITH EXPERIMENT

A panel of overaged 7075 (T7651) aluminum was tested

experimentally. The specimen was a center-cracked panel

with width 8.89cm and crack length to width ratio of 0.5.

The stress-strain curve for the material is shown in

Figure 5. The specimen was loaded to the highest applied
load precluding crack growth and subsequently unloaded.

The residual surface deformations were measured using a
special LVDT probe and measuring technique described in [19].

The same panel was analyzed using the finite element
method using the procedure and discretization described
previously. The panel was loaded incrementally and unloaded
to a zero applied load state (the local plastic state, how-
ever, showed considerable residual deformation and stress as
would be expected). Displacement contours near the inter-
section of the crack with the free surface were generated
from the solution and compared with the average experimental
results. The comparison is summarized in Figure 6. The
solid lines are the numerically predicted contours and the
discrete points are from the experimental data.

The average of the four sides was compared as the local
inhomogeneity and lack of symmetry is virtually eliminated
in the experimental average. The results demonstrate the
accuracy of the finite element modeling and solution pro-

cedure being employed. The experimental data and predicted
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contours differ by less than 3%. This is more accurate than
was expected comparing with claims made for the finite ele-
ment solution of crack problems in two dimensions.

i The comparison presented above and described fully in
[19]) demonstrates the accuracy of the current numerical
approach and modeling. The results predicted subsequently
would model fairly well the true deformation in engineering
fracture specimens. The remainder of the problems to be
discussed will qualitatively examine some of the more

important aspect of fracture specimens and modeling.
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MATERIAL HARDENING EFFECTS

& 1

ol

To investigate the effect of material hardening model, ngi

a center cracked panel 8.89cm wide was studied. The crack ;ifb

length to width ratio is 0.5 and the specimen length to Ei{:

width ratio is 2.0. The idealization is the same as dis- : E

cussed previously. The loading is normal to the crack f

direction and reaches a maximum load equal to 1/3 for the ;éf;

material yield stress. The material is modeled as either ‘ AS
exhibiting kinematic hardening behavior, isotropic hardening

behavior or a mixed hardening behavior (as descriped pre-
viously). Since the global applied loading is monotonic,
the three hardening modeles would predict identical fesponse
if the local deformation were truly proportional in nature
(assuming no crack growth).

Figures 7, 8 and 9 show the yield zones on the surface

of the specimen at maximum load for each of the hardenihg

models. The local response. is definitely non-proportional.
The isotropic model predicts more yielding on the crack ‘?;5
extent line than either or the other two models. This would E;%i

suggest a more ductile response ahead of the crack (implying

a greater tendency toward stable crack growth prior to final ._d
failure). The results with mixed hardening have proven to
be the closest to what is observed experimentally. The

others, therefore, should be viewed with that fact in mind.

The largest affect of hardening model is the yield

...............
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characteristics on the crack extent line. The maximum
yvield radius and the '"skewing" of the yield zones is fairly
independent of the hardening model. It is important to
emphasize, however, that the differences between the pre-
dictions are significant and the local response is highly
non-proportional.

Figures 10, 11 and 12 show the yield zones on the mid-
plane of the specimen. These zones demonstrate the same
hardening effects as do the surface zones. The greatest
influence of hardening model is seen on the line of crack
extent. On the midplane of the specimen, a plane-strain
type of zone, would be expected (i.e., similar to zones pre;
dicted with a 2-dimensional plane-strain analysis). The
mixed hardening model demonstrates the most realistic re-
sults (which is consistent with the surface observations).

The results demonstrate that the local response near
a crack is not of the proportional type. This has signifi-
cant implications with respect to valid failure criteria
and analysis models (which will be discussed in the con-
cluding section). The results presented also demonstrate
that a mixed hardening rule is the most realistic for modeling
the aluminum alloys investigated so far and is probably best
for most engineering metals. A complete discussion of the
hardening modeling effects and the implications of these

findings can be found in [2].
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SPECIMEN THICKNESS EFFECTS

In this study, the specimen thickness is varied and the %gs
different zone sizes and shapes are reported (the same center t;éh
cracked panel is used with mixed hardening assumptions). ;;f
Figures 13a, 13b, 13c and 13d show the surface yield zones as fﬁ%
a function of thickness. The thickness is varied from 1.5 f:;
times the ASTM plane strain requirement to a very thin panel 544

dimensions (total thickness of about 3mm). Even for the
thinnest specimens, the classical '"plane stress' zones are
not recovered demonstrating that the assumptions of 2-D
plane stress are not valid for this specimen. Also, even 53;
for very thick specimens, the predicted zone does not con- o
form to classical plane strain zones (the surface deforma-

tion will never conform to 2-D assumptions since not only is

the surface normal stress zero but the strains required to
produce plastic incompressibility require a nonuniform nor-
mal strain through the thickness which is incompatible with
2-D plane strain). It is important to remember that a state

of stress with zero normal and anti-plane shear does not

need to reduce to 2-D plane stress.

Figures 14a, 14b, l4c and 144 show the midplane zones

™ .
Y.

- j
'~ i

)
£y

for the four thicknesses. As the thickness increases, it Do
e

is obvious that the zones approach plane strain zones (which N
. e _:J

they should). Even at the largest thickness, however, they #j

show some skewing due to the finite geometry. From these
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Figure 13a: Surface Yield Zones For Specimen With

2T = 2.54 cnm.
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Figure 13b: Surface Yield Zones For Specimen With
2T = 1.27 cm,
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r/a = .205

Figure 13c: Surface Yield Zones For Specimen With
2T = 6.35 mm.

r/a = .296

Figure 13d: Surface Yield Zones For Specimen With
2T = 3.175 mm.
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r/a = .039

Figure 1l4a: Midplane Yield Zones For Specimen With
2T = 2.54 cm.
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r/a = 0.071

Figure 14b: Midplane Yield Zones For Specimen With
2T = 1.27 cm.
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Figure 144: Midplane Yield Zones For Specimen With
2T = 3.175 mm,
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results, the ASTM criterion may not be good enough for
ductile materials.

The yield radii and extent of yielding ahead of the
crack tip are summarized in the tables. It is important
to note that the yield radius changes by about 10% with
thickness, however, the yielding ahead of the tip changes
drastically and, thus, the plastic area changes. "Since
more energy is being dissipated with larger areas, the
ductility and fracture properties are obviously dependent.

This study demonstrates the thickness effects on local
yield characteristics and also mandates 3-D analysis for
accurate quantitative predictions. A complete discussion

on the effects of specimen thickness can be found in [3].
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Thickness

Tmax/a Tola

T= 2.5 em 0.307 0.045
T=1.27 em 0.327 0.075
T=6.35 m 0.331 0.205
T= 3,175 om 0.343 0.296

r -+ maximum yield radius

max

r, > yield radius along crack line

Table la: Yield Radii As A Function Of Thickness For

Surface Yield Zones.

Thickness r T
max/a o/a
T= 2.5 cm 0.260 0.039
T=1.27 ¢m 0.280 0.071
T=6.35 mm 0.283 0.193
T=3.175 om 0.299 0.288

Table 1b: Yield Radii As A Function Of Thickness For

Midplane Yield Zones.
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CONCLUSIONS

This paper presents a unified and complete computational
approach to solving elastic-plastic engineering problems.
. The application of this approach to fracture specimens is
| presented including the mesh discretization necessary to
produce accurate results. Several of the more important
- aspects of cracked specimens (i.e., material modeling,
specimen thickness, accuracy requirements) are examined.
The results of the experimental study demonstrate that
? the current approach and discretization are extremely accurate
; for predicting detailed local deformations. This comparison
is essential for establishing fhe validity of the computa-
. tional procedure and discretization employed. Comparison
- of global parameters far from the crack (such as compliance,
"~ gauge displacement, mouth opening, etc.) are not sufficient
to establish a given approach or modeling as accurate. The
results of this study also demonstrate that the mixed

hardening model is the most accurate for the material studied.

r

i

Initially, the effect of hardening parameter was E;ﬁa
examined to delineate the differences in local deformation

during unloading. It was discovered, however, that significant

‘ER.

local response differences are predicted during the loading t%:ﬂ
segment also. This is in direct opposition to the assump-

tion of proportional loading often made in the literature.

Indeed, the assumption is imperative for "deformation"
' F
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theory plasticity studies to have any validity. The results
presented (already established through experimental compari-
son) clearly demonstrate that the local response is dis-
tinctly non-proportional. This result also demonstrated

that local fracture and failure criteria are the only criteria
which are theoretically plausible (as proportional loading 1is
essential for the validity of global criteria) are 1local
criteria. This has been suggested by many authors in the
past and has often been a point of argument in the fracture
community. Global criteria such as J-integral, nonlinear
compliance, crack mouth opening, etc., all require propor-
tional local loading. These criteria, therefore, cannot
validly be emploved for nonlinear fracture problems.

The effect of specimen thickness was investigated to
determine the range of validity for the assumptions of plane
stress and plane strain near a crack tip. The results
presented demonstrate that even for extremely thin specimens,
the local response does not behave in a plane stress manner.
These results also demonstrate that the local deformation
does not approach plane strain behavior until the thickness
is far beyond the ASTM requirement. While two dimensional.
studies need to be performed as preliminary qualitative in-
vestigations, they cannot be expected to produce results
which predict local deformation quantitatively.

The extensions of the work presented needed to fully

unravel the mysteries of fracture mechanics are endless. Tc




begin, however, several directions are clear. Computationally,
it is important to extend the algorithms to account for crack
growth in a consistent and accurate manner. The procedure,
however, must be independent of any particular failure
criterion and not require excessive computational require-
ments. Recent work has proposed one approach to the problem
and demonstrated its efficiency and accuracy in two-dimen-
sions. Further study is needed for the extension to three-
dimensions.

The major theoretical area in which more research is
needed is in the area of failure criteria. It is beyond the
scope of this work to review all the criteria which have
been proposed to address nonlinear fracture problems. The
results of the work presented in this report, however,
demonstrate that the.global criteria presented must be
abandoned as they rely on the assumption of propositional
loading which is incorrect. The local criteria presented
to date have not been sufficiently tested to establish any
one as a truly valid fracture criteria. The most widely
tested have all failed the critical requirements of geometry
and specimen independence and consistency over a wide range
of applications. Perhaps a new approach is needed. It is
important to continue pursuing iocal fracture criteria.

The ability to do large deformation, three-dimensional
analysis without the a priori bias of a failure criterion
should help in the development of a consistent and accurate

approach to elastic-plastic fracture problems.
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APPENDIX H:

"Effect of Specimen Thickness on Crack Front Plasticity
Characteristics in Three-Dimensions."

By: E. Thomas Moyer, Jr. and Harold Liebowitz.

Proceedings of the Sixth International Conference on Fracture,
New Delhi, India, December 4-10, 1984.
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EFFECT OF SPECIMEN THICKNESS ON CRACK FRONT PLASTICITY
CHARACTERISTICS IN THREE-DIMENSIONS

E. Moyer, Jr. and H. Liebowitz -
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' ABSTRACT

A finite element investigation of the effect of thickness on plastic defor-

mation and yielding characteristics in three-dimensional cracked bodies is

presented. It is shown that the fundamental deformation modes and extent of
. plastic deformation are significantly influenced by the specimen thickness.
= The results show the transition from 2 local plane strain to plane stress
response near the crack front as the specimen thickness is decreascd. While
:. the results are generated for a specific aluminum alloy (7075-T7651), the
predictions for other hardening materials would be gqualitatively the same.

“ KEYWORDS

Nonlinear finite-element calculations, plastic deformation, three-dimension-
al crack specimens, incremental analysis.

INTRODUCTION

=3 0f fundamental importance to the accurate fracture assessment of cowmponents
=] and structures made of metals is the study of ductile fracture processes and
. the plastic response near a crack. The basic deformation resporse near ihe
crack front must be resolved accurately for reliable predictions. Fracture o
criteria have been proposed based on many controlling quantities (e.g., N
o Stress, strain, energy, displacements, etc.) both on global and local scale

e levels. Without exception, all of these criteria require accurate local e
deformation modeling.

x To undurstand the scale shifcing effects from the laboratory specimen to the
. structural component, it is imperative to discover the effects of specimen
o thickness on the deformation response. This problem is an essentially
three-dimensional one and must be investigated accordingly.

:i -;:A The purpose of this investigation is to delineate the effect of specimen

’ thickness on local crack front yielding characteristics in a cracked speci-
men., The three-dimensional elastic plastic finite element code developed in
{1] is employed for the analysis. Specimen thicknesses investigated range
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from well bevond ASTM plane-strain requirements to thin sheet dimensions.
The yield zones calculated in this work demonstrate the transition from di-
latational to distortional dominance ahead of the crack tip as a function of
thickness (equivalent to a transition from plane strain to plane stress).
The magnitude as well as the extent of yielding is shown to be highly thick-
ness dependent. The results of this study also demonstrate that two-dimen-
sional analysis based on plane strain (for thick specimens) or plane stress
(for thin specimens) can fail to accurately model the local response when
simple standards would dictate otherwise.

PLASTICITY FORMULATION

The incremental theory of plasticity employed in this work is based on the
classical rate proportionality assumptions and J, flow theory. While the
mathematical details vary with the choice of yieid criteria, the salient
features of all incremental theories are the same. This discussion will, SN
therefore, be confined to the specific theory employed in this work. e

Assuming stress strain rate proportionality and J, flow theory (which
assumes the plastic deformations are incompressibze) the stress-strain rate E
relations can be written as [2] A

1 +vy 2 ' * - . R
E Sij *3 f(ce) Sijce e cy’ % 7 0

13
l14+ve
3 Sij Otherwise

where:
eij = Eij - epp éij are the deviatoric strain rate components,
v 1{s Poisson’'s ratio,
E is Young's modulus,

S

wir

1
19 cij -3 cpp Gij are the deviatoric stress components,

aij are the coordinates in stress space of the yleld surface ceanter
Sij = sij -~ aij are the deviatoric stress components measured relative
to the current yield center,
-y 3
oe 2 Sijsij is the effective stress,
o; = % Sijsij is the effective stress relative to the current yield

center,
oy is the current yield stress, and

ey

* denotes time differentiation.

Due to the incompressibility condition, the hydrostatic strain rate is pro-

portional to the mean stress rate and is given by ) ;:;i
° 1 -2v ¢ ‘.".—'1
€= == -
PP E 2% (2) &

The function f(ae) is dependent on the uniaxial stress-strain curve and will
be discussed subsequently. For a von Mises (J,) material, the center of the
yield surface moves at a rate proportional to the projection of the stress
rate vector onto the local normal to the current yield surface and can be
written as
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fle v E) - - ' ' - . -
R 7(1 - 8) skzsklsij/ce C¢ = Oy C¢ >0
. 333 (3)
o 0 Otherwise
f: where B varying from O to 1 will model hardening behavior from kinematic
Y (B = 0) to isotropic (B = 1).
The function £(0 ) 1s derived from the uniaxial stress-strain curve. For a
uniaxial specimeﬁ, equation (1) reduces to
3, 2 ,1+v, o .
Z(Eaxial - E:transvet'se) 3 ¢ E ) ce + f(ce) ceoe (4)
in the plastic range. Thus,
2 o . .
o f(c’e) = S(eaxial - E:transvm:se)/cec’e (5
. 1 .
Invoking incompressibility ({i.e., € = - ¢ ), the function
f(ce) can be written as transverse 2 Taxial
f(Ue) = Eplastic/ere (6)
If the uniaxial stress-strain curve is expressed in a multilinear fashion,
the stress-strain relation is
) o ] o]
. a 1 2 m
- £ = — — - m—| - . — -
] FtE (c1 cy) + z (oz oy) + ... + 3 (o om) N
where -1 < g < cm and a is given by
EAem - Aom
" TE - @
m
:i From equation (7), the plastic strain rate is given by
- . amée
~j E:plasxtic “TE (9
b and thus from (6) .
am
| £o) ~ £ | - (10)
. e
Equations (1), (2), (3) and (10) provide a complete set of elastic-plastic
constitutive relations. Together with the equilibrium equations and the
o strain-displacement relations, a governing system will be formed. It is
:i important to note that the constitutive formulation outlined above is
- acceptable for finite as well as infinitesimal strains. Also of importance

- is the fact that this formulation is strain-rate independent. This assump-
v tion appears to be realistic for most engineering metals at room temperature
(or cooler). For high temperature problems a rate-independent formulatiom
is dubious.

Equations (1), (2), (3) and (10) provide the fundamental relationships be-
- tween stress and strain rates. The equilibrium conditions (governing equa-
% tions) for a continuum body in the absence of body forces and inertia
effects can be written as
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.J with the boundary conditions ‘: -
N . . i .
;: cij“j - Ti on ST
F: and . N (12)
} u; = uy on Su
. vhere T are the specified loading rates on the boundary experiencing applied
I*,'. X B
::C-_ tractions (S,) and u, are the velocities specified on the remainder of the .
;-:. boundary (S J. Utilizing the standard infinitesimal strain-displacement RO
N relations ° [:
1 v
. Eij ‘,Z(at.li/ax:J + Buj/axi) (13) ._‘:_-'."_
" and either employing the Principle of Virtual Work for increments of dis- ._'-‘f'_'_
) placement or by performing the standard Galerkin technique on the governing e
<. equations, (}1) and (12), the finite element equations governing the nodal e
) velocities, U can be written in terms of the loading rate vector, R, in ‘
the form - - cex
- .. A
v K(U) + 0 -R=0 (14) BeoS
; The standard finite element assumptions made are given by :j‘-"-'_:
';- B - EI R U . :n'.‘
. gE=38-1 (15) o
g =D(U) - € Ko
e
T
K@U) = I / B'D(U) B dA
T elements element volume ~ ~ ~ "
':;' where N are the shape functions. The set of rate equations (14) will be in- 1:.‘-:-'_'
tegrated one load increment (AR) at a given time to determine the corre- N
- sponding new displacement increment, AU. The Newton-Raphson or tangent S
: stiffness solution procedure is employed as described in [3].
PROBLEM DESCRIPTION .
To study the effects of specimen thickness on the yielding characteristics
o of typical fracture specimens, a finite center-cracked plate was chosen for <.
‘e investigation. The standard mode I configuration shown in Fig. 1 was
analyzed for total thicknesses of 7
-’ N \"
2T = 2.54 cm 2T = 1.27 cm R
- 2T = 6.35 mm 2T = 3,175 mm ‘,
. W
,'.: The material investigated was a 7075-T7651 aluminum alloy with elastic pro- N
. perties '
= E = 7.24 E+04 MPa
AT v = 0.3 S
- o, = 4.07 E+02 4Pa o
P The uniaxial stress-strain curve is shown in Fig. 2. F
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. The finite element discretization employed in the analysis utilizes 20-Node ;~L;;:{'
! quadratic isoparametric elements exclusively. A fine mesh near the crack
front is employed for accurate modeling. The grid characteristics and con- S
::: vergence properties are discussed in [1,4]. The maximum lnad applied was el
A O_._ = 1.77 E+02 MPa i
T max e
i A hardening parameter of 8 = 0.5 was also assumed in the analysis. ':‘:'.~
RS RESULTS AND DISCUSSION N
A
A o
The yield zones predicted at the maximum load for each of the four thick~ AR
. nesses studied were calculated and plotted both on the surface and midplane ::-:‘}
i of the specimen. The results demonstrate the significant influence thick- -
A ness has both on the nature and extent of the yielding. I’i A
pm e e e P S
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' Figure 3a is a plot of the von Mises stress contour corresponding to the 523
v specimen yield stress calculated at the maximum load on the surface of the RS
. 2.54 cm thick specimen. As expected for a thick specimen, this zone has the S
" characteristic form of a plane strain yield zone (i.e., minimal yielding _:;:
d ahead of the crack tip and a very upright yield zone). The maximum extent el
. of yielding 1s 30.7% of the half crack length which is consistent with the -l
. small strain assumptions made in the analysis requiring contained yielding. !ix
- Figure 3b is a plot of the surface zones for a specimen with total thickness e
if of 1.27 cm. The yield zone is slightly wider (more rounded) with this e
™ thickness. The maximum radius is now 32.7% of the half crack length and the e
- yielding ahead of the tip has increased (though it is still small). The il
. zone still maintains the basic plane strain characteristics at this thick-

ness.

Figure 3¢ shows the surface yield
zone for a specimen with thickness of
6.35 mm. The zone is now much wider
with a larger maximum radius and
yield extent ahead of the tip. The
zone no longer exhibits the plane
strain characteristics but is in
transition between plane strain and
plane stress. Figure 3d is a plot of
the surface yield zone for a specimen
with total thickness of 3.175 mm.

The zone is significantly more
rounded than any of the previous T/a = .045
zones with a larger maximum radius
and yield extent. The maximum yield
radil and extent of yielding ahead
of the crack tip for the four thick-
ness surface zones are given in
Table la. These yield parameters
both increase with decreasing thick-
ness as was expected. The final
zone at a thickness of 3.175 mm has
the rounded characteristic of a
plane stress yleld zone. The dizec-
tion of maximum yielding, however,
is still a fairly large angle rela-
tive to the crack line suggesting
some influence of dilatation.

Though for this problem (with a
relatively small amount of plastic
deformation present) the difference
between the maximum radii is not
large, the nature and extent of

yielding ahead of the crack tip show a large dependence on the specimeu
thickness.
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Fig. 3a. Surface yield zones for
specimen with 2T = 2.54 cm.
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Fig. 3b. Surface yield zones for
specimen with 2T = 1,27 cm.
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Figure 4a is a plot of the von Mises stress contour corresponding to the
material yield stress on the midplane of the 2.54 cmm thick specimen. The
zone is typical of plane strain zones and is smaller than the surface zone
for the same thickness specimen. The shape of the zone with a minimal ex-
tent of yielding ahead of the crack tip suggests high dilatation in that
region. The midplane zone for the 1.27 cm thick specimen is shown in
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S Fig. 4b. The zone is larger than that N
of the thicker specimen, however, K
there is still minimal yielding ahead RS
' of the tip. The angle of maximum G{ﬁi
. yielding is more acute than in the o
: thicker specimen. The stress state, g:ﬁ
. however, would still be characterized WO
| by plane strain. E
. :’ 'f-
Figure 4c shows the midplane yield e
zone for the 6.35 mm thick specimen. ~
The zone is considerably wider and T/a = .208 S
more rounded than for the thicker Ry
l specimens. It shows characteristics Fig. 3e. :::Zi;:nyi;tﬁ ;gn:s6f§; .

of both plane strain and plane
stress zones suggesting a region of
transition. Figure 4d is a plot of
the midplane yield zone for the
3.175 mm thick specimen. The zone
| is basically a plane stress zone
and is larger than for the thicker
specimens. The maximum yield radij
- and radius of yielding ahead of
the crack tip on the specimen mid-
planes are given in Table 1b. Both
increase with decreasing thickness"
as was expected. In all cases, the /6 o .296
midplane yield zones are smaller
than the surface zones.

Fig. 3d. Surface yield zones for
specimen with 2T = 3,175 mm.
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Fig. 4a. Midplane yield zones for Fig. 4b. Midplane yield zones for T”Zi.
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! Fig. 4c. Midplane yield zones for Fig. 4d. Midplane yield zones for . E
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TABLE la Yield Radii as a function TABLE 1b Yield Radii as a Function of

of Thickness for Surface Thickness for Midplane Yield K
Yield Zones. Zones. -
Thickness Taax/s Tole Thickness Toax/s Tola ,':::-.‘
8
- 2. 0.307 0.048 -3, . .039 A,
3e i.g; - 0.327 0.015 e i.;; s g.::g g.o71 &
T~ 6.35 m 0.33 0.205 T =635 mm 0.283 0.193 F
Tellm 0.343 o 0.9 Tl 0.299 0.288 -
Toax maximum yield radius r,* yield radius along crack line
CONCLUSIONS

The results of this study demonstrate the thickness dependence of the yield
zones near a crack front on specimen thickness. It is shown that both the
extent of plastic deformation and the dominance of deformation type (i.e.,

dilatation or distortion) are controlled by the thickness. The nature of

the deformation is fundamental to the understanding of the incipient frac-
ture processes. The delineation of the fundamental deformation response L
near a three~dimensional crack front is an imperative first step in the E_.
understanding and accurate prediction of ductile fracture processes. B

To further the understanding of ductile fracture, it is necessary to compare
theoretical and experimental deformation predictions local to the crack

front. Only through such comparisons can an assessment be made of the .
accurary and reliability of the numerical methods fr- [ last’. aualysis. To- E
ward this goal, it is proposed to measure the tesiduzi defs..iatlon on the :
surface of the specimen in the unloaded state. The theoretical study pre-
sented above demonstrates that the finite element predictions are qualita-
tively realistic and sensitive to specimen thickness. Comparison with ex-
perimental results will delineate the grid characteristics and hardening
models which best model specific geometric and material applications. After
successful "tuning" of the finite element model, a complete description of
the stress and energy state in a cracked body can be predicted with confi-
dence. Once fully three-dimensional stress fields are prediited, ductile S
failure theories can be tested and skeptically compared without the bias of RN
unrealistic analytical approximations. Sy

3 X
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